Eigenfrequency Spectrum of Prolate Spheroidal Magneto-optic Cavities

G. P. Zouros ${ }^{1}$ G. D. Kolezas ${ }^{1}$ G. K. Pagiatakis ${ }^{2}$
J. A. Roumeliotis ${ }^{1}$

${ }^{1}$ School of Electrical and Computer Engineering
National Technical University of Athens (NTUA), Greece
${ }^{2}$ Dept. of Electrical and Electronic Engineering Educators
School of Pedagogical and Technological Education (ASPETE), Athens, Greece

URSI GASS 2020
29 August - 5 September 2020

Outline

(1) Introduction
(2) Solution of the problem

- Numerical results
- Conclusions

1 Introduction

Aims of the study

- Investigation of the eigenfrequencies of prolate spheroidal magneto-optic cavities
- Scattering formulation employing spheroidal eigenvectors for the expansion of the incident, interior and scattered fields
- Application of a root-finding algorithm for obtaining the eigenfrequencies

1 Introduction

Magneto-optic cavities

- Magneto-optical coupling between spin and electromagnetic waves in the visible or near-infrared part of the spectrum can be realized in optomagnonic cavities
- The typical configuration for implementing magneto-optical coupling is through spherical cavities composed of bismuth-substituted yttrium iron garnets (Bi:YIG), which exhibit gyroelectric properties in the near-infrared
- Spheroidal cavity shape presents significant interest, due to experimental considerations and the occurrence of shape defects during the manufacturing of spherical cavities

1 Introduction

Configuration under study

Prolate spheroid composed of magneto-optical material

c_{0} : semi-major axis
b_{0} : semi-minor axis α : semi-focal distance $h=\alpha / c_{0}:$ eccentricity

- Gyroelectric permitivitty tensor due to external magnetic bias

$$
\boldsymbol{\epsilon}=\epsilon_{0}\left[\begin{array}{ccc}
\epsilon & i g & 0 \\
-i g & \epsilon & 0 \\
0 & 0 & \epsilon
\end{array}\right]
$$

- Scattering formulation with impinging plane EM wave $\mathbf{E}^{\text {inc }}=\boldsymbol{y} e^{i k_{0}\left(x \sin \theta_{0}+z \cos \theta_{0}\right)}$

2 Solution of the problem

Field expansions
Incident field: $\mathbf{E}^{\mathrm{inc}}\left(\mathbf{r}_{\mathbf{s}}\right)=\sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty}\left[C_{m n}\left(c, \theta_{0}\right) \mathbf{M}_{m n}^{r(1)}\left(c, \mathbf{r}_{\mathbf{s}}\right)+D_{m n}\left(c, \theta_{0}\right) \mathbf{N}_{m n}^{r(1)}\left(c, \mathbf{r}_{\mathbf{s}}\right)\right]$,
Scattered field: $\quad \mathbf{E}^{\mathrm{sc}}\left(\mathbf{r}_{\mathbf{s}}\right)=\sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty}\left[A_{m n} \mathbf{M}_{m n}^{r(3)}\left(c, \mathbf{r}_{\mathbf{s}}\right)+B_{m n} \mathbf{N}_{m n}^{r(3)}\left(c, \mathbf{r}_{\mathbf{s}}\right)\right]$,
where $\mathbf{r}_{\mathbf{s}}=(\xi, \eta, \varphi)$ the spheroidal coordinates, $c=k_{0} \alpha, \mathbf{M}_{m n}^{r(j)}$ and $\mathbf{N}_{m n}^{r(j)}$ the complex spheroidal eigenvectors of the first $(j=1)$ and third kind $(j=3)$.

2 Solution of the problem

Field expansions

- Employ spherical eigenvector expansion of the electric field in the gyroelectric region [Li and Ong, IEEE TAP, 2011]

Internal field: $\quad \mathbf{E}^{\text {int }}(\mathbf{r})=\sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty} \bar{E}_{m n} \sum_{l=1}^{\infty} a_{l}\left[c_{m n} / \mathbf{m}_{m n}^{(1)}\left(k_{l}, \mathbf{r}\right)+d_{m n} \mathbf{n}_{m n}^{(1)}\left(k_{l}, \mathbf{r}\right)\right.$ $(m, n) \neq(0,0)$

$$
\left.+\frac{\bar{w}_{m n l}}{\lambda_{l}} \mathbf{I}_{m n}^{(1)}\left(k_{l}, \mathbf{r}\right)\right]+\sum_{l=1}^{\infty} a_{l} \frac{w_{00 l}}{\lambda_{l}} \mathbf{I}_{00}^{(1)}\left(k_{l}, \mathbf{r}\right),
$$

where $\mathbf{r}=(r, \theta, \varphi)$ the spherical coordinates, $\bar{E}_{m n}$ known normalization constant, and $\mathbf{m}_{m n}^{(1)}, \mathbf{n}_{m n}^{(1)}, \mathbf{I}_{m n}^{(1)}$ the complex spherical eigenvectors of the first kind, $k_{l}=k_{0} \sqrt{\epsilon / \lambda_{l}}$, whereas $c_{m n l}, d_{m n l}, \bar{w}_{m n l}, w_{001}, \lambda_{l}$ are known quantities, obtained by solving an eigenvalue problem, the coefficient matrix of which depends on the permittivity tensor elements.

2 Solution of the problem

Field expansions

- Transform spherical expansion of $\mathbf{E}^{\text {int }}$ into one in terms of spheroidal eigenvectors [Cooray and Ciric, COMPEL, 1989]

Internal field: $\mathbf{E}^{\mathrm{int}}\left(\mathbf{r}_{\mathbf{s}}\right)=\sum_{m=-\infty}^{\infty} \sum_{n=|m|}^{\infty} \sum_{l=1}^{\infty} a_{l}\left[C_{m n /} \mathbf{M}_{m n}^{r(1)}\left(c_{l}, \mathbf{r}_{\mathbf{s}}\right)+D_{m n /} \mathbf{N}_{m n}^{r(1)}\left(c_{l}, \mathbf{r}_{\mathbf{s}}\right)\right.$

$$
\left.+\frac{\bar{W}_{m n l}}{\lambda_{l}} \mathbf{L}_{m n}^{(1)}\left(c_{l}, \mathbf{r}_{\mathbf{s}}\right)\right]+\sum_{l=1}^{\infty} \sum_{\ell=0}^{\infty} a_{l} \frac{w_{00 l}}{\lambda_{l}} \Gamma_{00 \ell}\left(c_{l}\right) \mathbf{L}_{0 \ell}^{(1)}\left(c_{l}, \mathbf{r}_{\mathbf{s}}\right),
$$

where $\mathbf{L}_{m n}^{(1)}$ the irrotational complex spheroidal eigenvector of the first kind, $c_{l}=k_{l} \alpha$, whereas $C_{m n l}, D_{m n l}, \bar{W}_{m n l}, \Gamma_{00 \ell}$ are known quantities.

- Respective magnetic fields $\mathbf{H}^{\text {inc }}, \mathbf{H}^{\text {sc }}$ and $\mathbf{H}^{\text {int }}$ obtained by Faraday's law $\mathbf{H}=-i /\left(\omega \mu_{0}\right) \nabla \times \mathbf{E}$

2 Solution of the problem

Boundary conditions at spheroid's surface

$$
\begin{gathered}
\hat{n} \times\left[\mathbf{E}^{\mathrm{sc}}\left(\mathbf{r}_{\mathrm{s}}\right)+\mathbf{E}^{\mathrm{inc}}\left(\mathbf{r}_{\mathrm{s}}\right)-\mathbf{E}^{\mathrm{int}}\left(\mathbf{r}_{\mathrm{s}}\right)\right]_{\mathbf{r}_{\mathrm{s}} \in S}=0 \\
\hat{n} \times\left[\mathbf{H}^{\mathrm{sc}}\left(\mathbf{r}_{\mathrm{s}}\right)+\mathbf{H}^{\mathrm{inc}}\left(\mathbf{r}_{\mathrm{s}}\right)-\mathbf{H}^{\mathrm{int}}\left(\mathbf{r}_{\mathrm{s}}\right)\right]_{\mathbf{r}_{\mathrm{s}} \in S}=0
\end{gathered}
$$

- Four sets of linear equations involving the unknown field expansion coefficients $\left\{A_{m n}, B_{m n}, a_{l}\right\} \longrightarrow$ linear system of the form $\mathbb{A}\left(x_{0}\right) \mathbf{v}=\mathbf{b}$
- $\mathbf{v}=\left[A_{m n}, B_{m n}, a_{1}\right]^{T}$ is the vector of unknown expansion coefficients, \mathbf{b} is the excitation vector whose components depend on the expansion coefficients of the incident wave $C_{m n}\left(c, \theta_{0}\right), D_{m n}\left(c, \theta_{0}\right)$, and $\mathbb{A}\left(x_{0}\right)$ is the system matrix
- $x_{0}=k_{0} c_{0}$: normalized wavenumber

2 Solution of the problem

Resonance problem

- Set $\mathbf{b}=0$, i.e., consider zero excitation, to investigate the resonance problem $\longrightarrow \mathbb{A}\left(x_{0}\right) \mathbf{v}=0$
- In order for the system to have non-trivial solutions $\longrightarrow \operatorname{det} \mathbb{A}\left(x_{0}\right)=0$
- Employ an efficient root-finding algorithm [Zouros, Comput. Phys. Comm., 2018] and find complex resonant wavenumbers x_{0}
- Respective complex eigenfrequencies $f=x_{0} /\left(2 \pi c_{0} \sqrt{\epsilon_{0} \mu_{0}}\right)$

3 Numerical Results

Eigenfrequency calculation
Spherical cavity-comparison with shape perturbation technique of [Kolezas et al, IEEE JSTQE, 2019]

Table: Normalized eigenfrequencies x_{0} for magneto-optic spherical cavity with $h=0$. Values of parameters: $\epsilon=5.5$ and $g=0.02$.

Mode index	x_{0} [this work]	$\operatorname{Re}\left\{x_{0}\right\}$ [Kolezas et al, IEEE JSTQE, 2019]
$m=2$	$6.34087-6.96427 \times 10^{-5} ;$	6.34087
$m=1$	$6.34097-6.96901 \times 10^{-5} ;$	6.34097
$m=0$	$6.34105-6.97215 \times 10^{-5} ;$	6.34106
$m=-1$	$6.34114-6.97310 \times 10^{-5} ;$	6.34113
$m=-2$	$6.34121-6.97150 \times 10^{-5} ;$	6.34121

3 Numerical Results

Eigenfrequency calculation

Slightly perturbed spherical cavity-comparison with shape perturbation technique of [Kolezas et al, IEEE JSTQE, 2019]

Table: Normalized eigenfrequencies x_{0} for magneto-optic spheroidal cavity with $h=0.01$. Values of parameters: $\epsilon=5.5$ and $g=0.02$.

Mode index	x_{0} [this work]	$\operatorname{Re}\left\{x_{0}\right\}$ [Kolezas et al, IEEE JSTQE, 2019]
$m=2$	$6.34104-6.96459 \times 10^{-5} ;$	6.34103
$m=1$	$6.34113-6.96928 \times 10^{-5} ;$	6.34112
$m=0$	$6.34121-6.97247 \times 10^{-5} ;$	6.34119
$m=-1$	$6.34130-6.97304 \times 10^{-5} ;$	6.34127
$m=-2$	$6.34137-6.97147 \times 10^{-5} ;$	6.34139

3 Numerical Results

Eigenfrequency calculation

Table: Normalized eigenfrequencies x_{0} for magneto-optic spheroidal cavity with $h=0.1$. Values of parameters: $\epsilon=5.5$ and $g=0.02$.

Mode index	x_{0} —[this work]
$m=2$	$6.35755-7.05128 \times 10^{-5} i$
$m=1$	$6.35726-7.04829 \times 10^{-5} i$
$m=0$	$6.35719-7.04199 \times 10^{-5} i$
$m=-1$	$6.35736-7.03187 \times 10^{-5} i$
$m=-2$	$6.35776-7.01947 \times 10^{-5} ;$

3 Numerical Results

Eigenfrequency calculation

Table: Normalized eigenfrequencies x_{0} for magneto-optic spheroidal cavity with $h=0.2$. Values of parameters: $\epsilon=5.5$ and $g=0.02$.

Mode index	x_{0} —[this work]
$m=2$	$6.41003-8.00140 \times 10^{-5} i$
$m=1$	$6.40851-8.00846 \times 10^{-5} i$
$m=0$	$6.40796-7.98339 \times 10^{-5} i$
$m=-1$	$6.40840-7.92740 \times 10^{-5} ;$
$m=-2$	$6.40981-7.84405 \times 10^{-5} i$

4 Conclusions

- Method based on spheroidal eigenvector formulation for the calculation of the eigenfrequencies of prolate spheroidal magneto-optic cavities is proposed
- Our approach allows for the calculation of the eigenfrequencies with increased accuracy but turns out to be time consuming when large changes in the eccentricity h are considered
- Small changes in h lead to relatively large shifts in the eigenfrequencies
- Straightforward extension to oblate spheroidal cavities

Acknowledgments

The authors acknowledge financial support for the dissemination of this work from the Greek School of Pedagogical and Technological Education (ASPETE) through the operational program Research strengthening in ASPETE - Project: Optomagnonic Devices and Systems (OPTOMAGNON)

Thank you for your attention!

