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1 Introduction

Aims of the study

Investigation of the eigenfrequencies of prolate spheroidal
magneto-optic cavities

Scattering formulation employing spheroidal eigenvectors for the
expansion of the incident, interior and scattered fields

Application of a root-finding algorithm for obtaining the
eigenfrequencies
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1 Introduction

Magneto-optic cavities

Magneto-optical coupling between spin and electromagnetic
waves in the visible or near-infrared part of the spectrum can be
realized in optomagnonic cavities

The typical configuration for implementing magneto-optical
coupling is through spherical cavities composed of
bismuth-substituted yttrium iron garnets (Bi:YIG), which exhibit
gyroelectric properties in the near-infrared

Spheroidal cavity shape presents significant interest, due to
experimental considerations and the occurrence of shape defects
during the manufacturing of spherical cavities
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1 Introduction

Configuration under study
Prolate spheroid composed of magneto-optical material

c0: semi-major axis
b0: semi-minor axis
α: semi-focal distance
h = α/c0: eccentricity

Gyroelectric permitivitty tensor due
to external magnetic bias

ǫ = ǫ0





ǫ ig 0
−ig ǫ 0
0 0 ǫ





Scattering formulation with
impinging plane EM wave
Einc = ye ik0(x sin θ0+z cos θ0)
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2 Solution of the problem

Field expansions

Incident field: Einc(rs) =

∞
∑

m=−∞

∞
∑

n=|m|

[

Cmn(c , θ0)M
r(1)
mn (c , rs)+Dmn(c , θ0)N

r(1)
mn (c , rs)

]

,

Scattered field: Esc(rs)=
∞
∑

m=−∞

∞
∑

n=|m|

[

AmnM
r(3)
mn (c , rs)+BmnN

r(3)
mn (c , rs)

]

,

where rs = (ξ, η, ϕ) the spheroidal coordinates, c = k0α, M
r(j)
mn and N

r(j)
mn the

complex spheroidal eigenvectors of the first (j = 1) and third kind (j = 3).
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2 Solution of the problem

Field expansions

Employ spherical eigenvector expansion of the electric field in the
gyroelectric region [Li and Ong, IEEE TAP, 2011]

Internal field: Eint(r)=

∞
∑

m=−∞

∞
∑

n = |m|
(m, n) 6= (0, 0)

Emn

∞
∑

l=1

al

[

cmnlm
(1)
mn(kl , r)+dmnln

(1)
mn(kl , r)

+
wmnl

λl

l(1)mn(kl , r)
]

+

∞
∑

l=1

al
w00l

λl

l
(1)
00 (kl , r),

where r = (r , θ, ϕ) the spherical coordinates, Emn known normalization constant,

and m
(1)
mn, n

(1)
mn, l

(1)
mn the complex spherical eigenvectors of the first kind,

kl = k0
√

ǫ/λl , whereas cmnl , dmnl , wmnl , w00l , λl are known quantities, obtained
by solving an eigenvalue problem, the coefficient matrix of which
depends on the permittivity tensor elements.
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2 Solution of the problem

Field expansions

Transform spherical expansion of Eint into one in terms of spheroidal
eigenvectors [Cooray and Ciric, COMPEL, 1989]

Internal field: Eint(rs) =

∞
∑

m=−∞

∞
∑

n=|m|

∞
∑

l=1

al

[

CmnlM
r(1)
mn (cl , rs)+DmnlN

r(1)
mn (cl , rs)

+
Wmnl

λl

L(1)
mn(cl , rs)

]

+

∞
∑

l=1

∞
∑′

ℓ=0

al
w00l

λl

Γ00ℓ(cl )L
(1)
0ℓ (cl , rs),

where L
(1)
mn the irrotational complex spheroidal eigenvector of the first kind,

cl = klα, whereas Cmnl , Dmnl , Wmnl , Γ00ℓ are known quantities.

Respective magnetic fields Hinc, Hsc and Hint obtained by Faraday’s law
H = −i/(ωµ0)∇× E
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2 Solution of the problem

Boundary conditions at spheroid’s surface

n̂ ×
[

Esc(rs) + Einc(rs)− Eint(rs)
]

rs∈S
= 0,

n̂ ×
[

Hsc(rs) +Hinc(rs)−Hint(rs)
]

rs∈S
= 0.

Four sets of linear equations involving the unknown field expansion
coefficients {Amn,Bmn, al} −→ linear system of the form A(x0)v = b

v = [Amn,Bmn, al ]
T is the vector of unknown expansion coefficients, b is the

excitation vector whose components depend on the expansion coefficients of
the incident wave Cmn(c , θ0), Dmn(c , θ0), and A(x0) is the system matrix

x0 = k0c0: normalized wavenumber
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2 Solution of the problem

Resonance problem

Set b = 0, i.e., consider zero excitation, to investigate the resonance
problem −→ A(x0)v = 0

In order for the system to have non-trivial solutions −→ detA(x0) = 0

Employ an efficient root-finding algorithm [Zouros, Comput. Phys.
Comm., 2018] and find complex resonant wavenumbers x0

Respective complex eigenfrequencies f = x0/(2πc0
√
ǫ0µ0)
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3 Numerical Results

Eigenfrequency calculation

Spherical cavity—comparison with shape perturbation technique of [Kolezas et al,
IEEE JSTQE, 2019]

Table: Normalized eigenfrequencies x0 for magneto-optic spherical cavity with
h = 0. Values of parameters: ǫ = 5.5 and g = 0.02.

Mode x0 Re{x0}
index [this work] [Kolezas et al, IEEE JSTQE, 2019]
m = 2 6.34087− 6.96427× 10−5i 6.34087
m = 1 6.34097− 6.96901× 10−5i 6.34097
m = 0 6.34105− 6.97215× 10−5i 6.34106
m = −1 6.34114− 6.97310× 10−5i 6.34113
m = −2 6.34121− 6.97150× 10−5i 6.34121
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3 Numerical Results

Eigenfrequency calculation

Slightly perturbed spherical cavity—comparison with shape perturbation
technique of [Kolezas et al, IEEE JSTQE, 2019]

Table: Normalized eigenfrequencies x0 for magneto-optic spheroidal cavity with
h = 0.01. Values of parameters: ǫ = 5.5 and g = 0.02.

Mode x0 Re{x0}
index [this work] [Kolezas et al, IEEE JSTQE, 2019]
m = 2 6.34104− 6.96459× 10−5i 6.34103
m = 1 6.34113− 6.96928× 10−5i 6.34112
m = 0 6.34121− 6.97247× 10−5i 6.34119
m = −1 6.34130− 6.97304× 10−5i 6.34127
m = −2 6.34137− 6.97147× 10−5i 6.34139
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3 Numerical Results

Eigenfrequency calculation

Table: Normalized eigenfrequencies x0 for magneto-optic spheroidal cavity with
h = 0.1. Values of parameters: ǫ = 5.5 and g = 0.02.

Mode
index x0—[this work]
m = 2 6.35755− 7.05128× 10−5i

m = 1 6.35726− 7.04829× 10−5i

m = 0 6.35719− 7.04199× 10−5i

m = −1 6.35736− 7.03187× 10−5i

m = −2 6.35776− 7.01947× 10−5i
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3 Numerical Results

Eigenfrequency calculation

Table: Normalized eigenfrequencies x0 for magneto-optic spheroidal cavity with
h = 0.2. Values of parameters: ǫ = 5.5 and g = 0.02.

Mode
index x0—[this work]
m = 2 6.41003− 8.00140× 10−5i

m = 1 6.40851− 8.00846× 10−5i

m = 0 6.40796− 7.98339× 10−5i

m = −1 6.40840− 7.92740× 10−5i

m = −2 6.40981− 7.84405× 10−5i
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4 Conclusions

Method based on spheroidal eigenvector formulation for the
calculation of the eigenfrequencies of prolate spheroidal
magneto-optic cavities is proposed

Our approach allows for the calculation of the eigenfrequencies with
increased accuracy but turns out to be time consuming when large
changes in the eccentricity h are considered

Small changes in h lead to relatively large shifts in the
eigenfrequencies

Straightforward extension to oblate spheroidal cavities

URSI GASS 2020 15 / 17



Acknowledgments

The authors acknowledge financial support for the dissemination of
this work from the Greek School of Pedagogical and Technological
Education (ASPETE) through the operational program Research
strengthening in ASPETE – Project: Optomagnonic Devices

and Systems (OPTOMAGNON)

URSI GASS 2020 16 / 17



Thank you for your attention!

URSI GASS 2020 17 / 17


