

Assessment of EMF Exposure from Urban Sensor Measurements by Using Artificial Neural Network

C2M

Dr. Shanshan WANG, Prof. Joe WIART

Télécom Paris - IP Paris, LTCI, C2M Chair

Aug, 2020

Outline

- Introduction on EMF Exposure
- Challenges in Evaluating EMF Exposure
- Sensor Networks Simulations
- Artificial Neural Networks
- Results
- Conclusions and Future Work

Introduction on EMF Exposure

- Base Stations
- Cellphones
- Laptops
- Wi-Fi Hotspots
- Radio
- •••

How to model the exposure?

- Through measurements, e.g., driving test
- Through mathematical modeling, e.g., Kriging
- or using Neural Networks (NN)

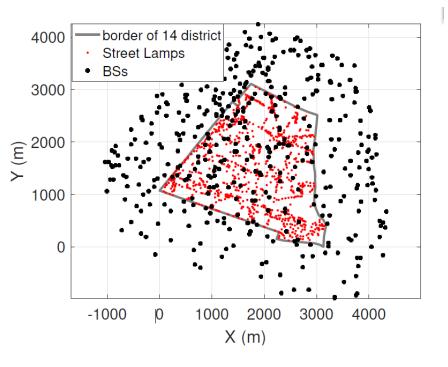
Introduction on EMF Exposure

Sensors Measurements carried out by **EXEM**:

Sensors are installed on streetlamps

C2M

- It records 12 to 48 times per day, each time data is averaged and summed over three directions
- Wide band frequencies are considered (0 MHz-10000 MHz).



Red dots: Real streetlamps located in 14th district of Paris. Blue dots: Cellular network base stations.

Introduction on EMF Exposure

Measurements from Implemented Sensors:

N° du Site	Latitude	Longitude	EMF exposure recorded by sensor
1	48.834469	2.313251	Averaged over Whole Week
3	48.83031711	2.31354475	0.7 - Averaged over Whole Week
4	48.827964	2.315369	Averaged over weekdays
6	48.829843	2.316147	<u></u> − 0.6
7	48.834208	2.318654	
10	48.83707565	2.32060432	e.0 g.0 g.0 g.0 g.0 g.0 g.0 g.0 g.0 g.0 g
12	48.83805	2.322466	st
13	48.835195	2.322677	
17	48.83085387	2.32103348	P 0.4
18	48.83191325	2.31946707	ш 0.3
24	48.8269788	2.3252302	
26	48.829461	2.322404	0.2
40	48.827826	2.328907	
44	48.821421	2.333076	0.1
49	48.826419	2.310599	0 5 10 15 20
			Time in one day: [h]

- Red solid line: EMF exposure averaged over every measurement day.
- Red dashed line: EMF exposure averaged over only weekdays.

*Measurement data in the table and figure is accessed in Feb 2020.

Challenges in Evaluating EMF Exposure

Challenges in Real Sensor Networks:

Sensor records wide band measurements, including

- noise in unused white spectrum
- Signal from military frequency
- Time variation matters
- Different simultaneous traffic load, causes bias in the measurements by car
- How many sensors are required to reconstruction the spatial map of EMF exposure?

Simulations instead of measurements of sensor network

- Lower cost than real sensor networks
- More features available

Towards to a practical simulation model, we need:

- Directional Antennas
- Background Noise
- Time Variation
- Realistic Path Loss Model

Sensor Networks Simulations

Directional Antennas

The antenna equipped on each BS operating at 2600 MHz has random orientation.

- Background Noise. Adding 10% AWGN noise to the received power (SNR = 10dB).
- Time Variation. Adding variation factor f_t to the received power.

$$f_t(t) = -0.3\sin(t) + 2, 0 \le t \le 24$$

Realistic Path Loss Model: Block-based path loss model

Sensor Networks Simulations

Block-based path loss model

Different regions may have different reception ability depending on the surrounding environment:

C2M

- Locations near a square, have a small value of path loss exponent(PLE).
- Locations among tall buildings are more likely to have high PLE value.

3000 $PLE\alpha = 2.5$ $PLE\alpha=3$ $PLE\alpha = 3.5$ 2500 $\mathsf{PLE}\alpha=4$ 2000 Ê 1500 1000 500 0 0 1000 2000 3000 4000 X (m)

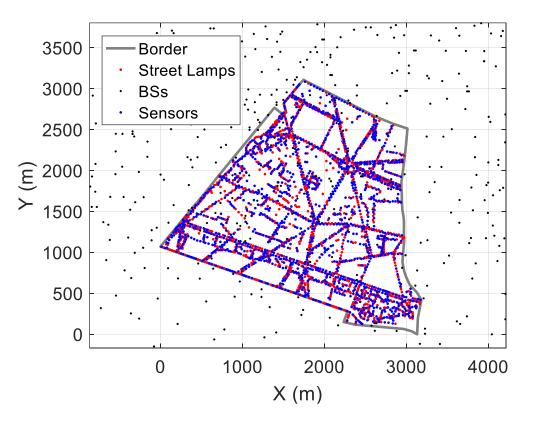
*If given empirical city structure, the block-based model can also be extended and may NOT be in "blocks" only.

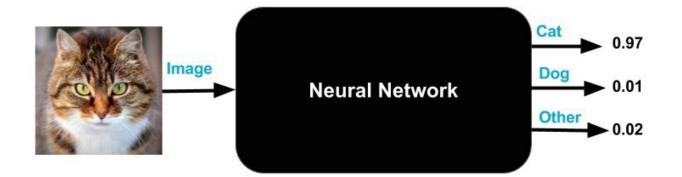
C2M

Sensor Networks Simulations

Real locations of BSs and Streetlamps

- 254 BSs inside and near 14 District Paris (ANFR^[1])
- Sensors installed on the selected street lamps (3516)

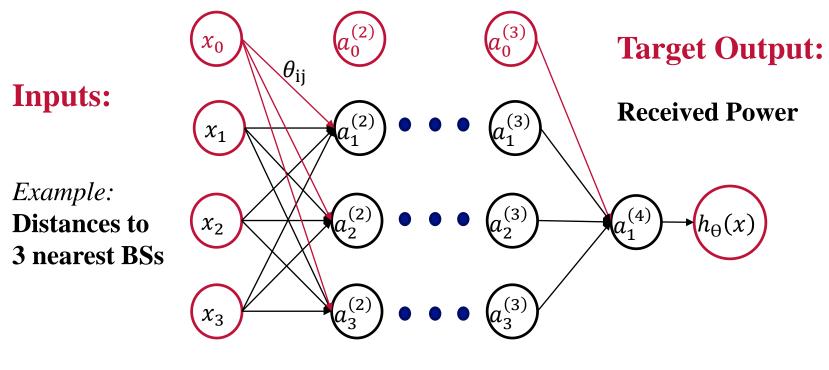




Why Artificial Neural Networks (ANN)?

- Learn complex functions and models
- Advancements in hardware made Deep Learning Possible, e.g., GPUs, TPUs...
- Outperform other learning algorithms

Forward Propagation



Back Propagation

Selection of Hyper-parameters:

It depends a lot on the data itself and the training experience of the user [1].

- Learning rate
- Batch size
- Num. of epoch
- Num. of hidden layers

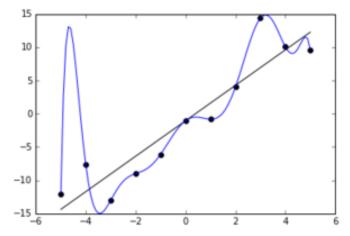
	Typer-parameters in the NN	
Number of Hidden Layers	5	
Activation Functions	"ReLU", "Linear" for output layer	
Number of Neurons	60 each for hidden layers, 30 for output layer	
Learning Rate	0.00001	
Optimizer	Adam ([4])	
Mini Batch Size	30	
Loss function	MSE	
Number of epoch	600	

Table 1. Umor parameters in the NN

[1] Bengio, Yoshua. "Practical recommendations for gradient-based training of deep architectures. "Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 437-478.

Overfitting in NN:

The trained model is too closely or exactly to a particular set of data; Therefore, it may fail to predict testing or future data



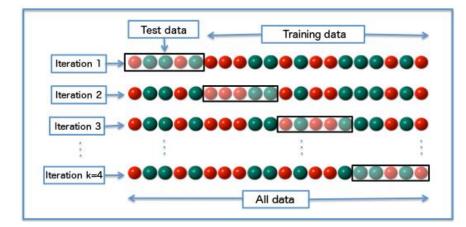
To solve overfitting problems in NN:

- Use Regularization (L1 or L2 regularization)
- Early Stop (reducing Number of training iterations)
- Increasing Dataset Size

Télécom Paris

GridSearchCV: a useful tool based on tensorflow environment

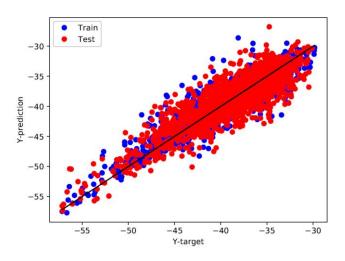
 Using Cross Validation to select models (with different hyper parameter combinations)

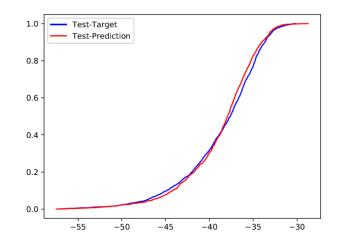


Cross Validation is a useful approach when we have limited input data

With time variation and noise

Hyper-parameters	$L_r = 1e - 4, N_{input} = 23, Batch Size = 10,$	
	$N_{hidden layer} = 4$, $Epoch = 500$, Early stop used	
Training data	$MSE = 5.307494, R^2 = 0.8740$	
Testing data	$MSE = 10.17736, R^2 = 0.767$	





😿 IP PARIS

With time variation and noise

Training	Testing	\mathbf{R}^2
50%	50%	0.767
37%	63%	0.753
28%	72%	0.720
14%	86%	0.705
9%	91%	0.523
3%	97%	0.478

With the decreasing number of training data,

the performance if prediction is decreasing as expected.

Conclusions and Future Work

Conclusions:

- New path loss model is proposed
- A more practical simulator is generated
- EMF exposure is analyzed by ANN with good prediction performance when training data is large

Future Work:

- Real city structure will be considered in block-based PLM
- Reconstruction form Sensor networks is not efficient enough

