Apıбтотغ́ $\lambda \varepsilon ı$
Паvєлıбтŋ́ μ וо
Өєбба入ovíкทร

Excitation of a Layered Sphere by Multiple Point-Generated Primary Fields

Andreas Kalogeropoulos and Nikolaos L. Tsitsas
School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece akaloger@csd.auth.gr ntsitsas@csd.auth.gr

Outline

- Excitation by multiple sources: background and motivation
- Mathematical formulation
- Excitation operators and overall fields
- Derivation of the exact solution of the direct problem
- Low-frequency approximations
- Numerical results
- Conclusions

Background

- T-Matrix method: A method for the solution of the direct scattering problem, that reduces the problem of identifying the exact form of the scattered fields into solving 2×2 linear systems.
- It was first introduced by Peter Waterman in 1969 and since, it has been established as an effective approach for scattering problems involving stratified media or periodic structures.
- Excitation by multiple sources: In many real-world problems, the overall radiation is a result of excitation by many different sources, e.g. electromagnetic activity of the brain, isotropic radiators, wind profiling SODARs, etc.
- Inverse schemes exploiting a priori assumptions for the nature of these sources are often used, e.g. beamforming techniques using microphone arrays (aero-acoustics) or dipole arrays (electromagnetics).

Objectives

- A layered medium excited by multiple point-generated fields: useful and realistic model for a variety of applications

■ Present research objectives:
\square Formulation of the problem based on the T-Matrix approach
\square Derivation for the exact solution of the direct problem
\square Low-frequency approximations for the overall far-field and the overall scattering cross section
\square Preliminary numerical implementations

Motivating applications ${ }^{1}$

- Activity of the human body (e.g. brain, heart)
\square "the field generated by the heart may be regarded as not significantly different from that of a dipole at the center of a homogeneous spherical conductor"
- Wilson, Bayley, Circulation, 1950
- Biomedical (biotelemetry, cancer treatment, hyperthermia)
\square dipole implantations in the head
- Kiourti et al, IEEE Trans. Biomed. Eng., 2012
- Kim, Rahmat-Samii, IEEE Trans. Microw. Theory Techn., 2004
- Electroencephalography and medical imaging
\square source inside the brain determined by scalp measurements
- Sten, Lindell, Microw. Opt. Tech. Let., 1992
- Dassios, Fokas, Inverse Problems, 2009brain imaging:
modeling by point-dipoles inside spherical or ellipsoidal media
- Dassios, Lect. Notes Math., 2009
- Ammari, Introduction to Mathematics of Emerging

Motivating applications²

- Method of point sources and partial waves
\square Approximation by multiple point sources
- Potthast, Point Sources and Multipoles in Inverse Scattering Theory, 2001
- Hollmann, Wang, Applied Optics, 2007
- Antenna design
\square microstrip antennas, dipole arrays, RFID antennas
- Yu, Li, Tentzeris, Small Antennas: Miniaturization Techniques and Applications, 2016
■ Meteorology
\square Wind profiling via SODAR
- Bradley, Atmospheric Acoustic Remote Sensing: Principles and Applications, 2007
- Anderson, Ludkin, Renfrew, J. Atmospheric Oceanic Techn., 2005

Mathematical formulation ${ }^{1}$

N point sources located at the sphere's exterior, generate spherical acoustic fields

$$
u^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=A_{j} \frac{\exp \left(\mathrm{i} k_{0}\left|\mathbf{r}-\mathbf{r}_{j}\right|\right)}{\left|\mathbf{r}-\mathbf{r}_{j}\right|}, \mathbf{r} \neq \mathbf{r}_{j}
$$

The layers of the sphere, are composed of materials with wavenumbers k_{p} and mass densities $\rho_{p}(p=1, \ldots, P-1)$.

Core V_{P} can be soft, hard or penetrable

Mathematical formulation²

- The individual and overall time-harmonic fields satisfy the scalar Helmholtz equations in the layers V_{p}

$$
\nabla^{2} u^{p}(\mathbf{r} ; \cdot)+k_{p}^{2} u^{p}(\mathbf{r} ; \cdot)=0
$$

- the transmission boundary conditions on $S_{p}(p=1, \ldots, P-1)$

$$
\begin{aligned}
u^{p-1}(\mathbf{r} ; \cdot) & =u^{p}(\mathbf{r} ; \cdot), \quad r=a_{p} \\
\frac{1}{\rho_{p-1}} \frac{\partial u^{p-1}(\mathbf{r} ; \cdot)}{\partial n} & =\frac{1}{\rho_{p}} \frac{\partial u^{p}(\mathbf{r} ; \cdot)}{\partial n}, \quad r=a_{p}
\end{aligned}
$$

- and the Dirichlet or the Neumann boundary conditions on the core

$$
u^{P-1}(\mathbf{r} ; \cdot)=0, \quad r=a_{P} \quad \frac{\partial u^{P-1}(\mathbf{r} ; \cdot)}{\partial n}=0, \quad r=a_{P}
$$

or the transmission boundary conditions for a penetrable core

- The external field satisfies also the Sommerfeld radiation condition. 8/18

Individual Fields

- The term individual fields is referred to the fields induced due to a single point source exciting the scatterer. Utilizing the free-space Green's function, the individual primary and secondary fields are given, respectively, by:

$$
u_{0}^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=4 \pi \mathrm{i} k_{0} A_{j}\left\{\begin{array}{l}
\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) Y_{n}^{m}(\hat{\mathbf{r}}) \\
h_{n}\left(k_{0} r\right) j_{n}\left(k_{0} r_{j}\right), r>r_{j} \\
\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{m}\left(\hat{\mathbf{r}}_{j}\right) Y_{n}^{-m}(\hat{\mathbf{r}}) \\
j_{n}\left(k_{0} r\right) h_{n}\left(k_{0} r_{j}\right), r<r_{j},
\end{array}\right.
$$

$$
\begin{array}{r}
u^{p}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=4 \pi \mathrm{i} k_{0} A_{j} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) Y_{n}^{m}(\hat{\mathbf{r}}) \\
h_{n}\left(k_{0} r_{j}\right)\left(a_{j, n}^{p} j_{n}\left(k_{p} r\right)+b_{j, n}^{p} h_{n}\left(k_{p} r\right)\right),
\end{array}
$$

Excitation Operators

- The overall field of layer V_{p} is the superposition of all individual fields induced in V_{p} by the external point sources. In the exterior V_{0} of the sphere the external field, is the superposition of all primary and secondary fields.
- We define the following excitation operators which simplify the solution of the direct problem, by means of the T-Matrix approach:

$$
\begin{gathered}
\mathscr{J}_{n, m}(\mathbf{x})=\sum_{j=1}^{N} A_{j} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) j_{n}\left(k_{0} r_{j}\right) \mathrm{x}_{j}, \\
\mathscr{H}_{n, m}^{1}(\mathbf{x})=\sum_{j=1}^{N} A_{j} Y_{n}^{m}\left(\hat{\mathbf{r}}_{j}\right) h_{n}\left(k_{0} r_{j}\right) \mathrm{x}_{j}, \\
\mathscr{H}_{n, m}^{2}(\mathbf{x})=\sum_{j=1}^{N} A_{j} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) h_{n}\left(k_{0} r_{j}\right) \mathrm{x}_{j}, \\
\mathrm{x}=\left(x_{1}, \ldots, x_{N}\right)
\end{gathered}
$$

Overall Fields and Field Expansions

With the aid of the excitation operators, the overall primary field in V_{0} is given by the following formula:

$$
u^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=4 \pi \mathrm{i} k_{0}\left\{\begin{array}{c}
\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{m}(\hat{\mathbf{r}}) \\
h_{n}\left(k_{0} r\right) \mathscr{J}_{n, m}(\mathbf{q}), \quad r>\max \left[r_{j}\right] \\
\vdots \\
\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{-m}(\hat{\mathbf{r}}) \\
j_{n}\left(k_{0} r\right) \mathscr{H}_{n, m}^{1}(\mathbf{q}), \quad r<\min \left[r_{j}\right],
\end{array} \quad \mathbf{q}=(1,1, \ldots, 1)\right.
$$

The secondary field in layer V_{p} is given by

$$
\begin{aligned}
& u^{p}\left(\mathbf{r}, \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=4 \pi \mathrm{i} k_{0} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{m}(\hat{\mathbf{r}}) \\
&\left(\mathscr{A}_{n, m}^{p} j_{n}\left(k_{p} r\right)+\mathscr{B}_{n, m}^{p} h_{n}\left(k_{p} r\right)\right) . \quad \begin{array}{l}
\mathbf{a}_{n}^{p}=\left(a_{1, n}^{p}, \ldots, a_{N, n}^{p}\right) \\
\mathbf{b}_{n}^{p}=\left(b_{1, n}^{p}, \ldots, b_{N, n}^{p}\right)
\end{array} \quad . \quad l
\end{aligned}
$$

$$
\mathscr{A}_{n, m}^{p}=\mathscr{H}_{n, m}^{2}\left(\mathbf{a}_{n}^{p}\right) \text { and } \mathscr{B}_{n, m}^{p}=\mathscr{H}_{n, m}^{2}\left(\mathbf{b}_{n}^{p}\right)
$$

Exact Solution of the Direct Problem ${ }^{1}$

- The transition matrix from layer V_{p-1} to layer V_{p} is given by

$$
\begin{array}{r}
\mathrm{T}_{n}^{p}=-i k_{p}^{2} a_{p}^{2}\left[\begin{array}{ll}
h_{n}^{\prime}\left(x_{p}\right) j_{n}\left(y_{p}\right)-w_{j} h_{n}\left(x_{p}\right) j_{n}^{\prime}\left(y_{p}\right) & h_{n}^{\prime}\left(x_{p}\right) h_{n}\left(y_{p}\right)-w_{j} h_{n}\left(x_{p}\right) h_{n}^{\prime}\left(y_{p}\right) \\
w_{j} j_{n}\left(x_{p}\right) j_{n}^{\prime}\left(y_{p}\right)-j_{n}^{\prime}\left(x_{p}\right) j_{n}\left(y_{p}\right) & w_{j} j_{n}\left(x_{p}\right) h_{n}^{\prime}\left(y_{p}\right)-j_{n}^{\prime}\left(x_{p}\right) h_{n}\left(y_{p}\right)
\end{array}\right] \\
x_{p}=k_{p} a_{p}, y_{p}=k_{p-1} a_{p} \text { and } w_{p}=\left(k_{p-1} \rho_{p}\right) /\left(k_{p} \rho_{p-1}\right)
\end{array}
$$

- Notation for the transition matrix from layer V_{p} to layer V_{s} and boundary transition vector

$$
\boldsymbol{\Psi}_{n}(x)=\left(\mathbf{T}_{n}^{(0 \rightarrow P-1)}\right)^{\mathrm{T}} \cdot\left[\begin{array}{l}
f_{n}(x) \\
g_{n}(x)
\end{array}\right]
$$

$$
\mathbf{T}_{n}^{(0 \rightarrow p)}=\mathbf{T}_{n}^{p} \cdot \mathbf{T}_{n}^{p-1} \cdot \ldots \cdot \mathbf{T}_{n}^{1}
$$

$$
f_{n}(x)= \begin{cases}j_{n}(x), & \text { soft core } \\ j_{n}^{\prime}(x), & \text { hard core }\end{cases}
$$

$$
g_{n}(x)= \begin{cases}h_{n}(x), & \text { soft core } \\ h_{n}^{\prime}(x), & \text { hard core }\end{cases}
$$

Exact Solution of the Direct Problem ${ }^{2}$

A straightforward implementation of the conditions on the boundaries of layers $V_{1} \ldots V_{P-1}$ yields:

$$
\left[\begin{array}{c}
\mathscr{A}_{n, m}^{P-1} \\
\mathscr{B}_{n, m}^{P-1}
\end{array}\right]=\mathbf{T}_{n}^{(0 \rightarrow P-1)}\left[\begin{array}{c}
\mathscr{H}_{n, m}^{1}(\mathbf{q}) \\
\mathscr{B}_{n, m}^{0}
\end{array}\right]
$$

For a soft or hard core the coefficient of the overall secondary field is given by:

$$
\mathscr{B}_{n, m}^{0}=-\frac{\Psi_{n}^{1}\left(k_{P-1} a_{P}\right) \mathscr{H}_{n, m}^{1}(\mathbf{q})}{\Psi_{n}^{2}\left(k_{P-1} a_{P}\right)}
$$

For a penetrable core we obtain:

$$
\mathscr{B}_{n, m}^{0}=-\frac{T_{21, n}^{(0 \rightarrow P)} \mathscr{H}_{n, m}^{1}(\mathbf{q})}{T_{22, n}^{(0 \rightarrow P)}}
$$

Exact Solution of the Direct Problem ${ }^{3}$

The coefficients of the individual external secondary fields, for a soft/hard or penetrable core, are given, respectively, by the formulas:

$$
b_{j, n}^{0}=-\frac{\Psi_{n}^{1}\left(k_{P-1} a_{P}\right) \mathscr{H}_{n, m}^{1}\left(\mathbf{h}_{j}\right)}{\Psi_{n}^{2}\left(k_{P-1} a_{P}\right)}
$$

$$
b_{j, n}^{0}=-\frac{T_{21, n}^{(0 \rightarrow P)} \mathscr{H}_{n, m}^{1}\left(\mathbf{h}_{j}\right)}{T_{22, n}^{(0 \rightarrow P)}}
$$

where

$$
\mathbf{h}_{j}=\frac{\mathbf{e}_{j}}{A_{j} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) h_{n}\left(k_{0} r_{j}\right)}
$$

The overall far-field and the overall scattering cross section, are given by

$$
\begin{gathered}
g(\hat{\mathbf{r}})=4 \pi \mathrm{i} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m}(-\mathrm{i})^{n} Y_{n}^{m}(\hat{\mathbf{r}}) \mathscr{B}_{n, m}^{0} \\
\sigma=\frac{4 \pi}{k_{0}^{2}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(2 n+1) \frac{(n-m)!}{(n+m)!}\left|\mathscr{B}_{n, m}^{0}\right|^{2}
\end{gathered}
$$

Low-Frequency Approximations

Under the low-frequency assumption $k_{0} a_{1} \rightarrow 0$ the overall far-field and the overall scattering cross section take the forms:

$$
\begin{gathered}
g(\hat{\mathbf{r}})=\kappa N S_{1}^{0}+\kappa^{2}\left(N \rho \eta\left(S_{1}^{0}\right)^{2}+S_{2}^{0} \sum_{j=1}^{N} \tau_{j} f_{j}(\theta, \phi)\right)+ \\
\kappa^{3}\left(N \beta(\rho, \xi, \eta)\left(S_{1}^{0}\right)^{3}-S_{2}^{0} \sum_{j=1}^{N} f_{j}(\theta, \phi)+S_{3}^{0} \sum_{j=1}^{N} \tau_{j}^{2} F_{j}(\theta, \phi)\right)
\end{gathered}
$$

$$
\begin{array}{r}
F_{j}(\theta, \phi)= \\
=\sin 2 \theta \sin 2 \theta_{j} \cos \left(\phi_{j}-\phi\right)+ \\
\sin ^{2} \theta \sin ^{2} \theta_{j} \cos \left(2\left(\phi_{j}-\phi\right)\right)+ \\
\left.\left(\cos ^{2} \theta_{j}-\frac{1}{3}\right)\left(3 \cos ^{2} \theta-1\right)\right)
\end{array}
$$

$\sigma=4 \pi a_{1}^{2}\left[N^{2}\left(S_{1}^{0}\right)^{2}+\left(k_{0} a_{1}\right)^{2}\left(N^{2}\left(S_{1}^{0}\right)^{4} \delta(\rho, \eta, \xi)+\right.\right.$

$$
\left.\left.\frac{\left(S_{2}^{0}\right)^{2}}{3}\left(\sum_{j=1}^{N} \tau_{j}^{2}+2 \sum_{j=1}^{N-1} \sum_{\nu=j+1}^{N} \tau_{j} \tau_{\nu} f_{j}\left(\theta_{\nu}, \phi_{\nu}\right)\right)\right)\right]
$$

$$
f_{j}(\theta, \phi)=\cos \theta_{j} \cos \theta+\sin \theta_{j} \sin \theta \cos \left(\phi_{j}-\phi\right)
$$

$$
\begin{array}{r}
S_{1}^{0}=\frac{1}{\rho-1-\rho \xi}, \quad S_{2}^{0}=\frac{\xi^{3}(1-\rho)+2+\rho}{\xi^{3}(1+2 \rho)+2+2 \rho}, \quad S_{3}^{0}=-\frac{2 \xi^{5}(1-\rho)+3+2 \rho}{2 \xi^{5}(2+3 \rho)+3-3 \rho}, \\
\beta(\rho, \eta, \xi)=\frac{(\rho \eta)^{2}(2 \xi+1)-\rho \eta^{2}}{3 \xi}, \quad \delta(\rho, \eta, \xi)=(\rho \eta)^{2}\left(1-\frac{\rho(2 \xi+1)-1}{3 \xi \rho}\right)
\end{array}
$$

Numerical results ${ }^{1}$

Low-frequency approximation vs. exact scattering cross section for a 2-layered sphere with a soft core with relative mass density index $\rho=1.5$ and refractive index $\eta=1.75$

Numerical results ${ }^{2}$

Low-frequency approximation vs. exact scattering cross section for a 2-layered sphere with a soft core with relative mass density index $\rho=2.5$ and refractive index $\eta=2.25$

Conclusions

- Acoustic excitation of a layered sphere by N external point sources
- Motivating applications
- Mathematical formulation of the direct scattering problem and suitable definitions of fields, far-field patterns and scattering cross sections
- Overall fields, excitation operators and T-Matrix formulation
- Exact solution of the direct scattering problem
- Low-frequency approximations
- Numerical results

