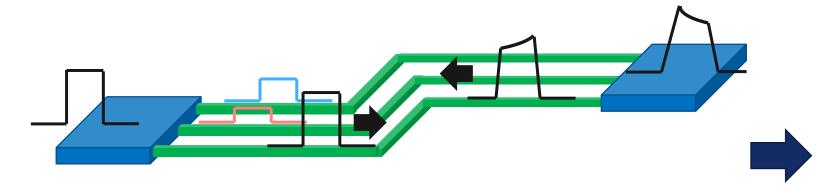
Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

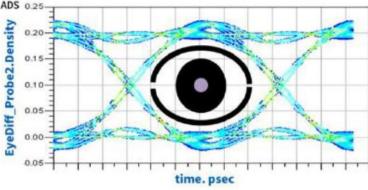
Felipe Treviso, Riccardo Trinchero, Flavio G. Canavero

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy <u>felipe.treviso@polito.it</u> <u>https://emc.polito.it</u>

Signal Propagation Effects in Interconnects

Electrical interconnects are responsible for a considerable part of **signal degradation** [1]





- Distortion (bits propagate and get distorted)
- Reflection (bits bounce back at all discontinuities)
- **Crosstalk** (the transmitted bits appear also on the other traces)

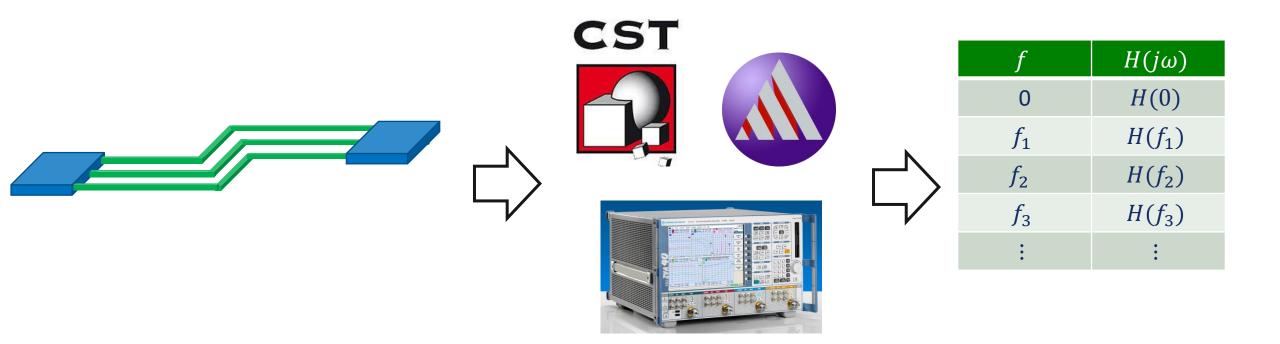
Interconnect models are essential to predict signal integrity of the channel during the design phase (via simulations) without requiring expensive prototyping → We need a model!!!

Date: 01-Sep-2020

Group

Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Usually, interconnects are characterized by tabulated frequency data obtained from electromagnetic simulations or measurements



Why do we need a model?

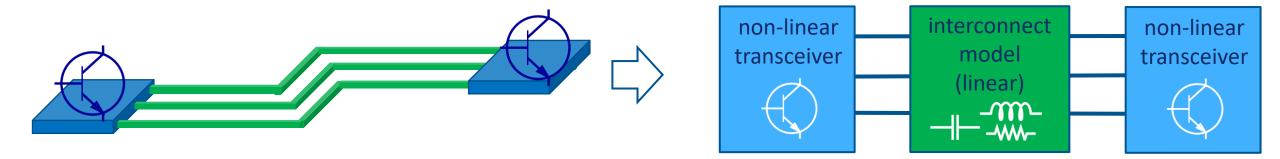
We already have a **characterization** of the **linear interconnects**

Date: 01-Sep-2020

Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Terminations

The link is made of wires/PCB traces (linear), while the terminations contain drivers, receivers, LDO and other nonlinear components

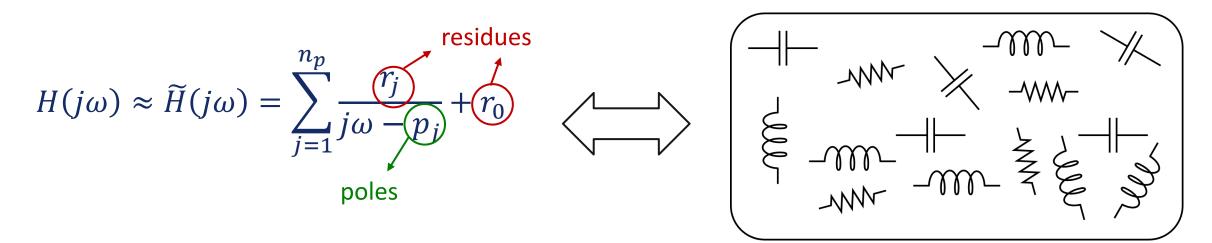


> Due to **nonlinear** elements, **signal integrity simulations** must be carried out in **time-domain**

Interconnect models obtained from frequency-domain data should also be compatible with time-domain circuit simulations

Date: 01-Sep-2020 Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Rational Models are naturally adopted to model **linear structures**



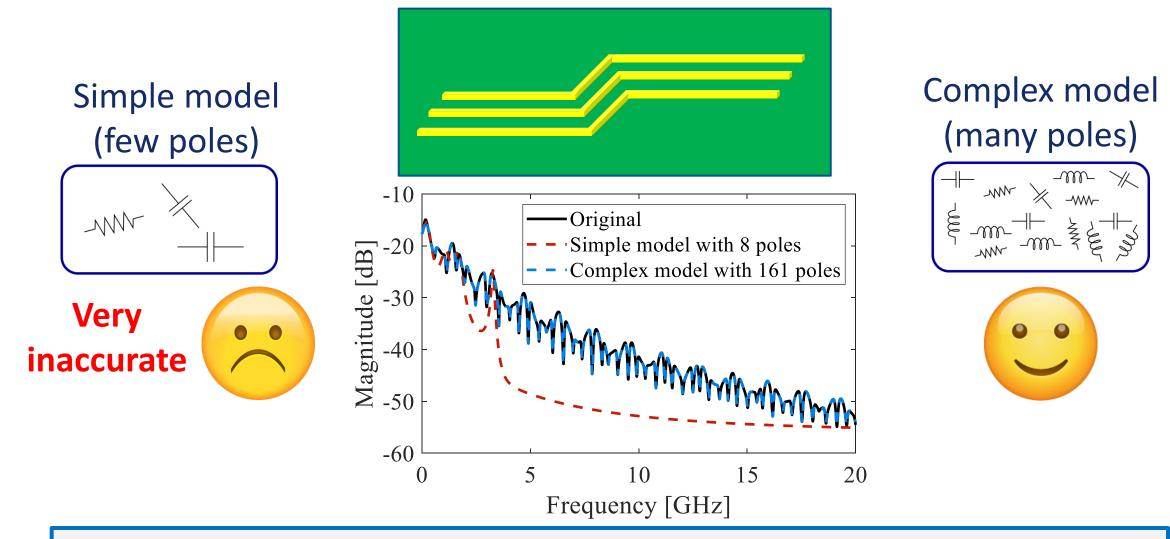
It is a **linear expansion** of **rational basis functions**

- ➤ Linear w.r.t. residues and nonlinear w.r.t. poles → iterative pole reallocation is used to select the optimal poles
- > An equivalent circuital representation is available

N.B. **1 pole = 1 dynamic element in the circuit** (capacitor/inductor)

Date: 01-Sep-2020 Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Accuracy versus Poles

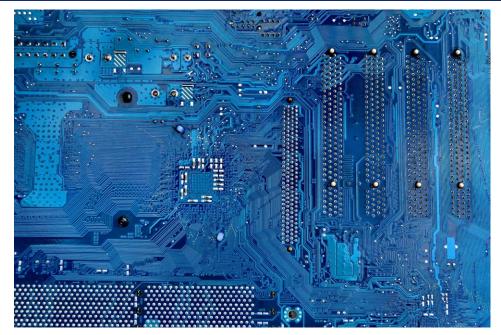


Circuital models sought for should be **accurate and fast to simulate**!!!

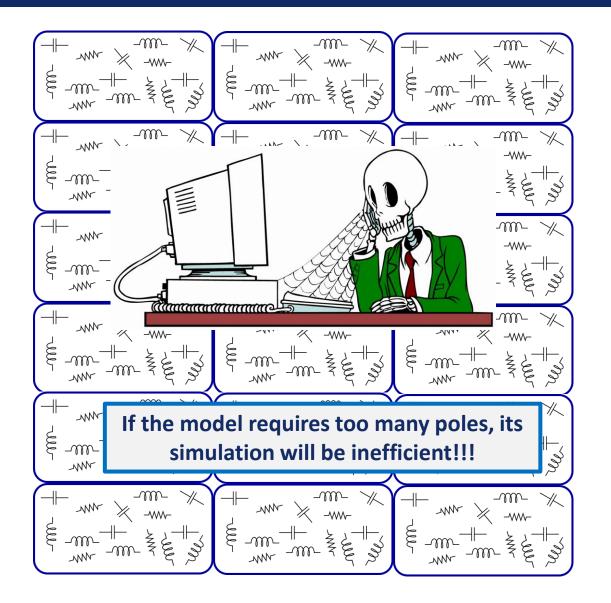
Date: 01-Sep-2020

Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

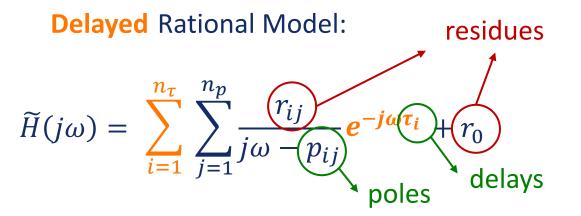
Larger System



- Supposing a simulation of 100 interconnects that need 161 poles each to achieve an accurate model
- 100 x 161 poles = 16,100 poles
- 16,100 dynamic elements in the simulation (capacitors/inductors)
- > 16,100 additional states in the system



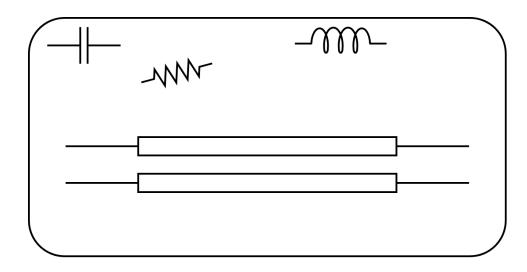
Delayed Rational Model (DRM)



Linear expansion of **delayed rational basis functions**

Advantages:

- ✓ Generally a lower number of poles w.r.t. the
 RM is required → faster simulation time
- ✓ **Causality** of the system is guaranteed by making $\tau_i > 0$
- ✓ Linear with respect to the residues
- Explicit representation of the delayed behavior of the transfer function



Disadvantages:

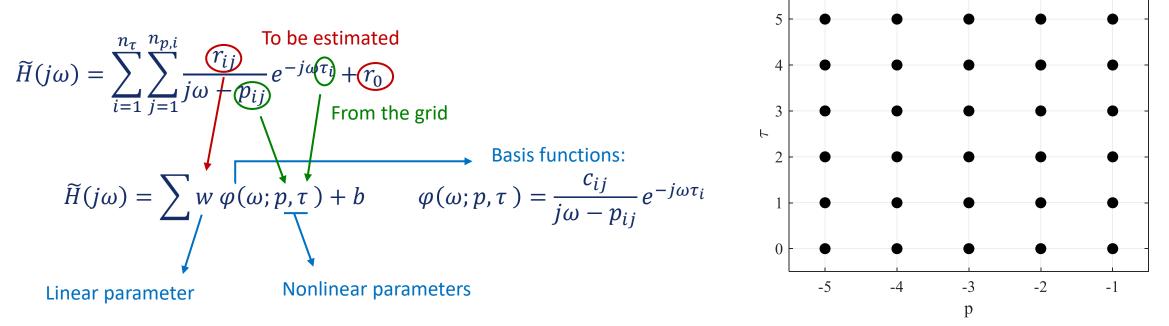
- x Unpractical to estimate both the poles and the delays together → usually delays are estimated first and poles afterwards
- x Generally requires **optimization** of the parameters to obtain a good model

Refs. [3]-[5]

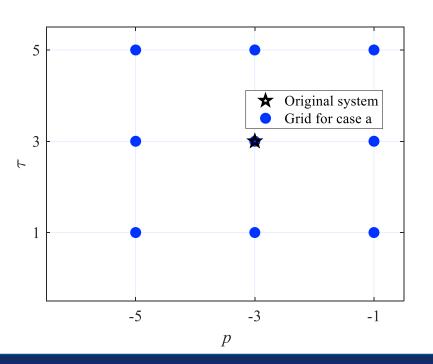
Let us consider, as a **test function**, the transfer function

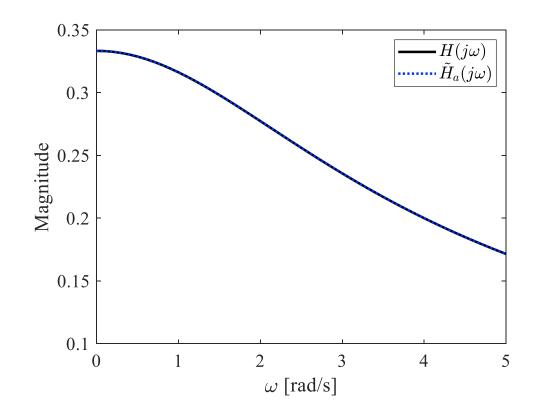
$$H(j\omega) = \frac{1}{j\omega + 3}e^{-j3\omega}$$

- □ We can **build a DRM** with **poles and delays** chosen on a **grid** in a $p \tau$ **plane** (*p* is restricted to be real, for the sake of visualization)
- The nodes of the grid provide the candidate poles and delays to be considered with the delayed rational model:

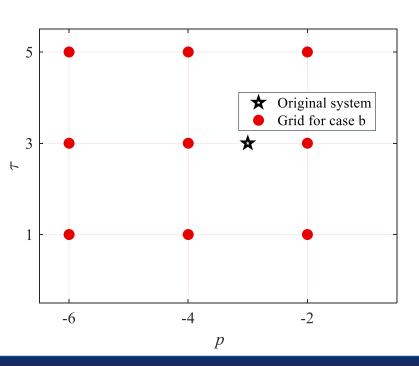


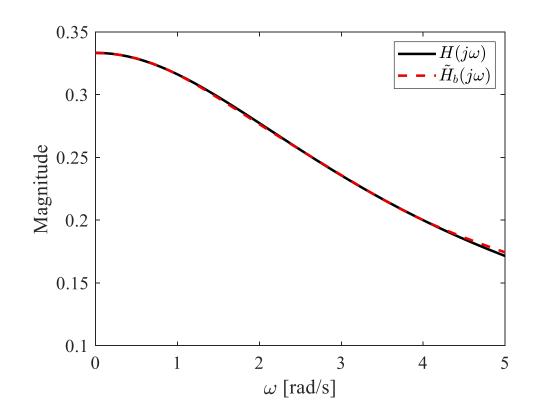
- Let us try to fit $H(j\omega) = \frac{1}{j\omega+3}e^{-j3\omega}$ by making a grid in a $p \tau$ plane:
- □ If the grid captures **exact pole and delay**
 - (a) Approx. model is **essentially perfect**



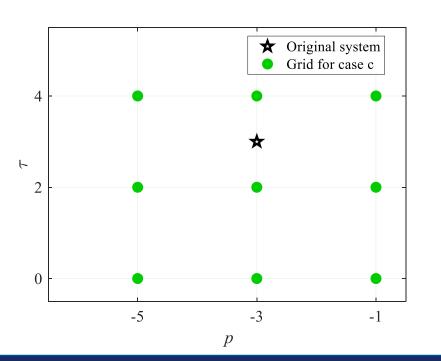


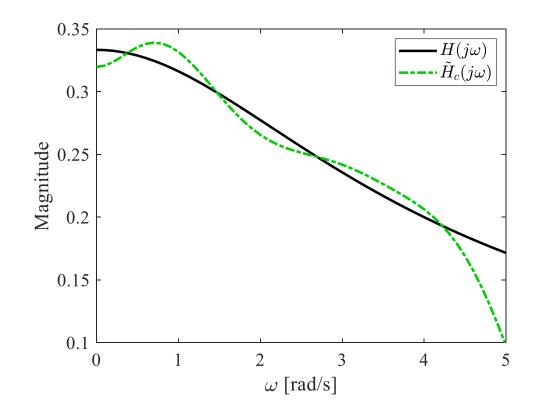
- Let us try to fit $H(j\omega) = \frac{1}{j\omega+3}e^{-j3\omega}$ by making a grid in a $p \tau$ plane:
- □ If the grid captures **only the exact delay**
 - (b) Approx. model is still **very good**





- Let us try to fit $H(j\omega) = \frac{1}{j\omega+3}e^{-j3\omega}$ by making a grid in a $p \tau$ plane:
- □ If the grid captures **only the exact pole**
 - (c) Approx. model is clearly inaccurate

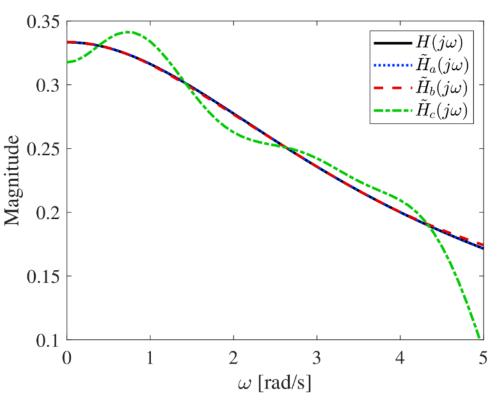




Grid Approximation - Summary

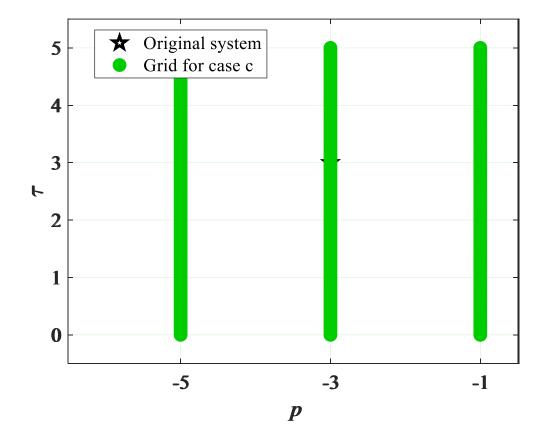
- Let us try to fit $H(j\omega) = \frac{1}{i\omega+3}e^{-j3\omega}$ by making a grid in a $p \tau$ plane:
- Three cases considered:
 - (a) Approx. model is essentially perfect
 - (b) Approx. model is still **very good**
 - (c) Approx. model is clearly inaccurate
- A larger number of poles can compensate a non-exact estimation of the poles, but a wrong delay estimation generates an inaccurate model, even if it uses the right poles

An accurate delay estimation is essential to obtain an accurate delayed rational model



Grid Approximation – Extreme Case

The DRM should contain the **exact delay** of the transfer function it approximates



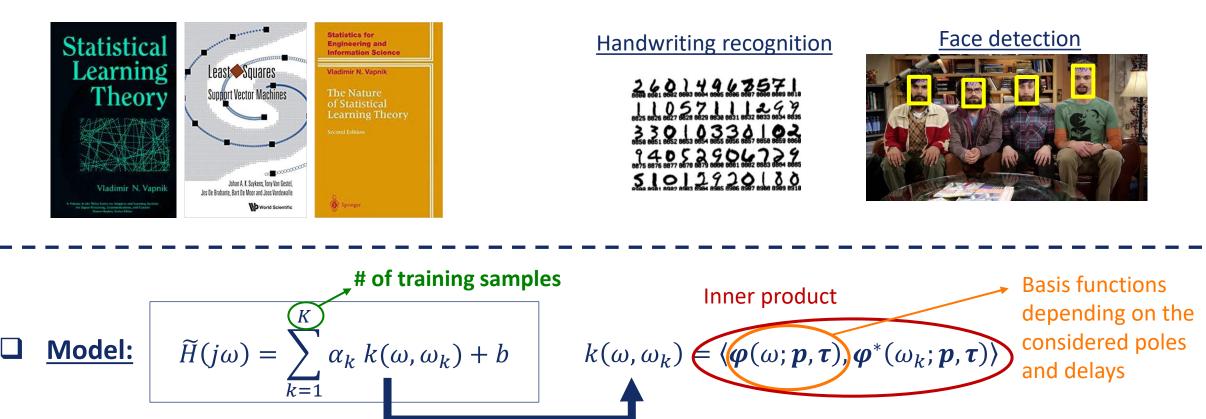
The only way to ensure that an unknown delay is included in the model is by considering an infinite number of delays $\widetilde{H}(j\omega) = \sum_{i=1}^{\infty} \sum_{j=1}^{n_{p,i}} \frac{r_{ij}}{j\omega - p_{ij}} e^{-j\omega\tau_i} + r_0$

How can we estimate a model with an **infinite number of terms**?

Machine learning (ML)

Support Vector Machines (SVMs) [6][7]

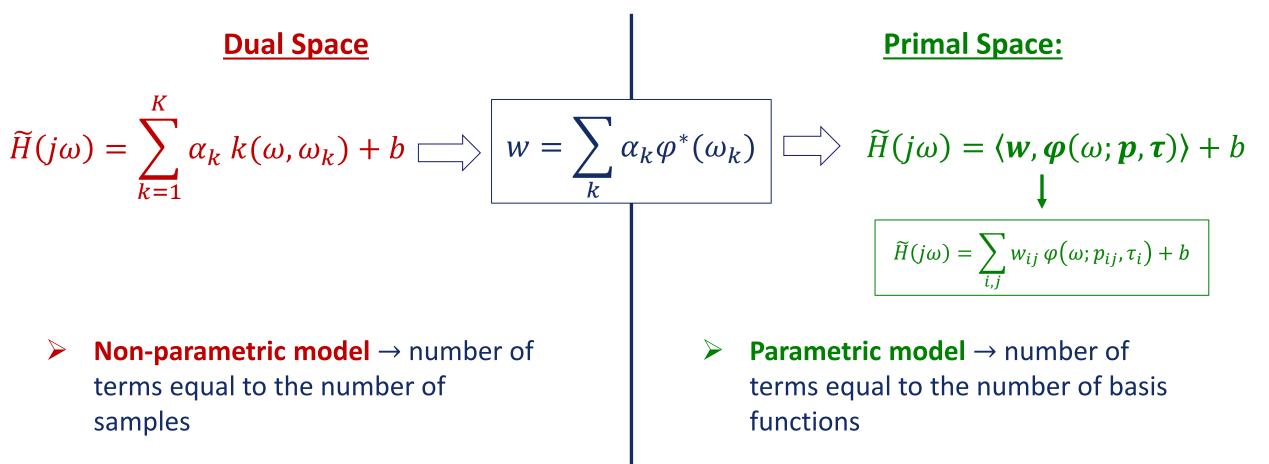
Historical applications:



Gernel is linked to a vector with the basis functions of a regression model → vector can be infinite dimensional!!! [6]

Date: 01-Sep-2020 Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

The Least Squares Support Vector Machine (LS-SVM) regression has two equivalent formulations [7]:



Duality

Equivalence with DRM

Use Weights *w* are proportional to the residues of a delayed-rational model

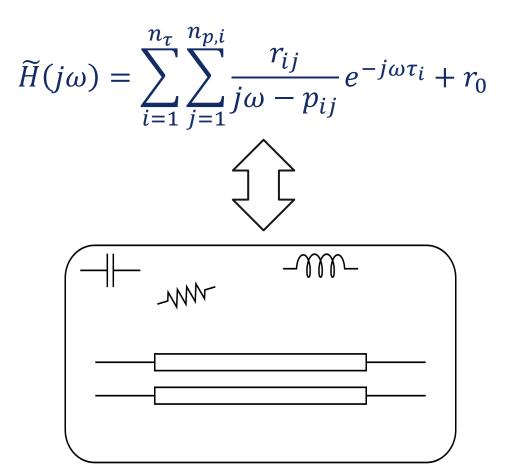
ML model:
$$\widetilde{H}(j\omega) = \underbrace{w(\tau_i, p_{ij})}_{i=1} \varphi(\omega; p_{ij}, \tau_i) + b$$

DRM: $\widetilde{H}(j\omega) = \sum_{i=1}^{n_{\tau}} \sum_{j=1}^{n_{p,i}} \frac{r_{ij}}{j\omega - p_{ij}} e^{-j\omega\tau_i} + r_0$

By looking at the values of w as a function of τ, we are able to see for which values of τ the w is larger, i.e., the dominant propagation delays of the system

Application of the Method

The identified propagation delays can be employed to build low-order delayed rational models



Identify delays with the proposed method

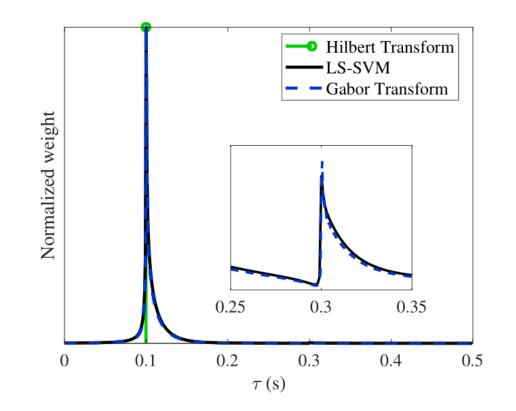
Employ such delays to obtain an accurate and efficient DRM

Application Examples – I

□ Known transfer function:

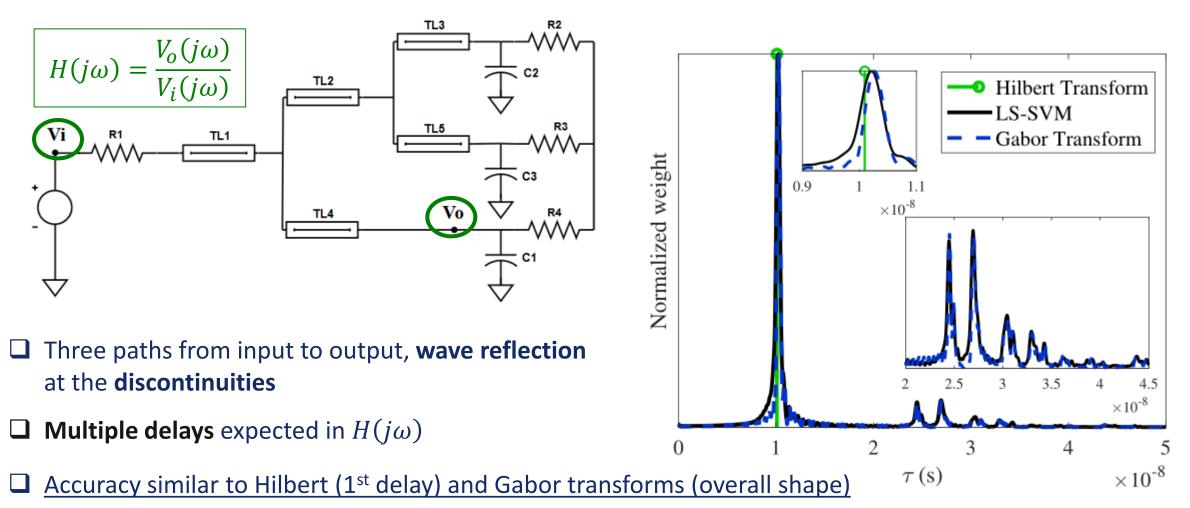
$$H(j\omega) = \left(\frac{1}{j\omega + 60 + 20j} + \frac{1}{j\omega + 60 - 20j}\right)e^{-\underbrace{\tau_1}_{0.1\omega}} + \frac{0.075}{j\omega + 100}e^{-\underbrace{\tau_2}_{0.3\omega}}$$

- Real and complex-conjugate poles
- First delay is the same as identified by Hilbert transform [8]
- Overall curve is like the one obtained by the Gabor transform [3]



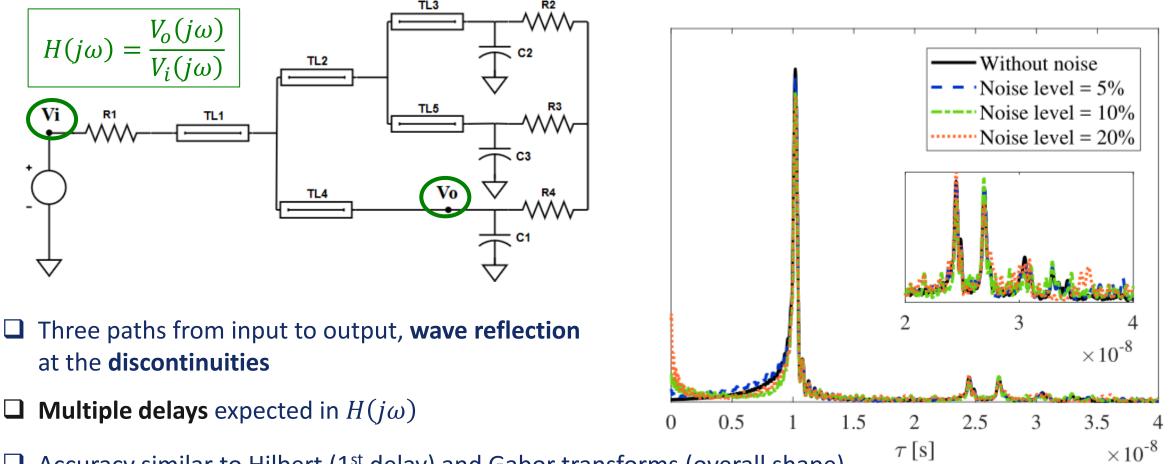
Date: 01-Sep-2020

Circuit with **multiple transmission lines**:



Application Examples – II (with Noise)

Circuit with **multiple transmission lines**:



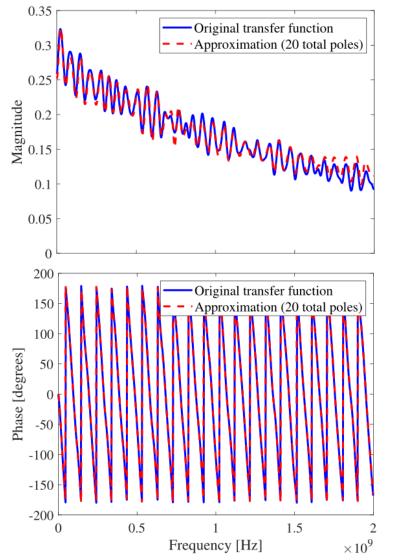
Accuracy similar to Hilbert (1st delay) and Gabor transforms (overall shape)

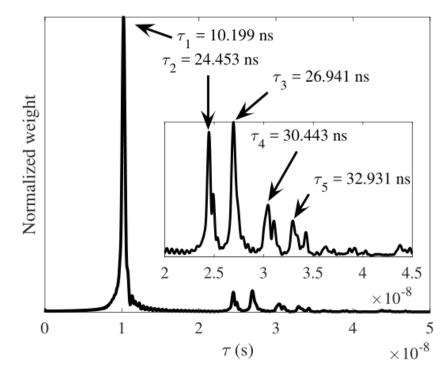
Good performance with noisy data

Date: 01-Sep-2020Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Application Examples – II (Summary)

Circuit with **multiple transmission lines**:



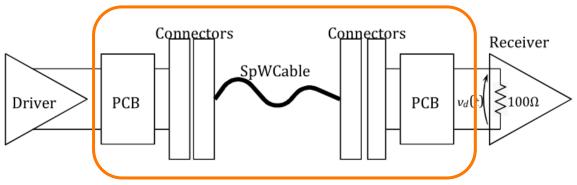


- Five delays and 20 poles distributed among them are sufficient to accurately model the original transfer function
- A rational model with similar accuracy requires 54 poles

	Proposed model	VF model
Error - L_2 -norm	0.3344	0.5200
Error - L_{∞} -norm	0.0261	0.0546
Order	20 total poles	54 total poles

Application Examples – III

SpaceWire (SpW) cable link:



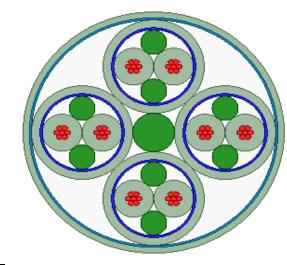
Scattering matrix of two wires of the link is considered:

 $S(j\omega) = \begin{bmatrix} S_{1,1}(j\omega) & S_{1,2}(j\omega) \\ S_{2,1}(j\omega) & S_{2,2}(j\omega) \end{bmatrix}$

□ Cable channel linking a driver and a receiver through:

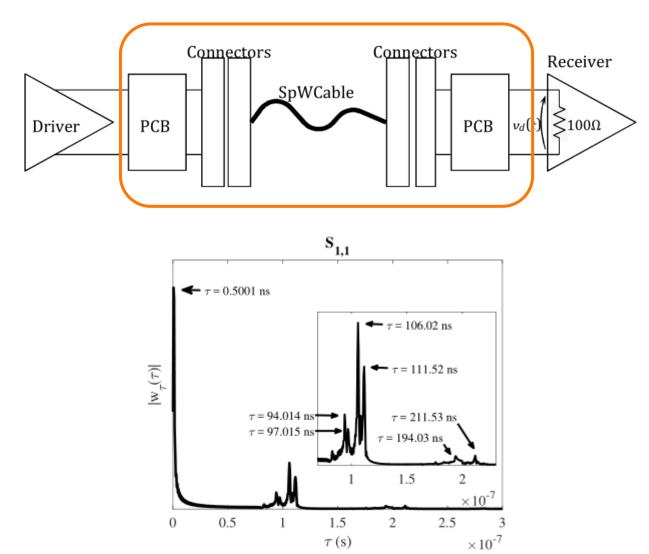
> Striplines

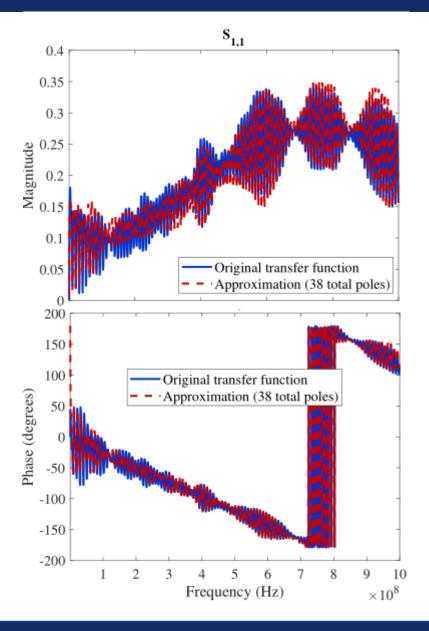
- 9-pin Micro-D connectors
- > SpW cable
 - 4 twisted pairs of wires
 - 1 inner shield around each of the pairs
 - 1 outer shield



Application Examples – III $(S_{1,1})$

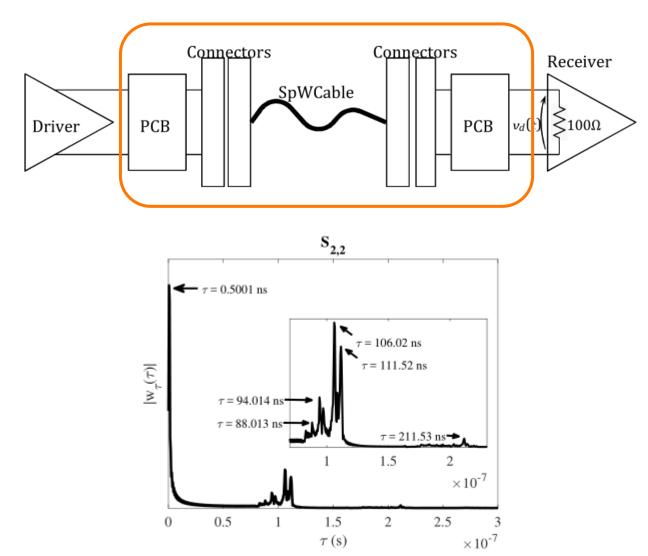
SpaceWire cable link:

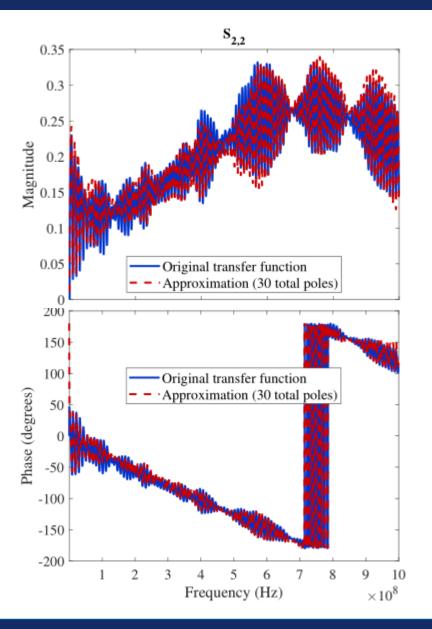




Application Examples – III ($S_{2,2}$)

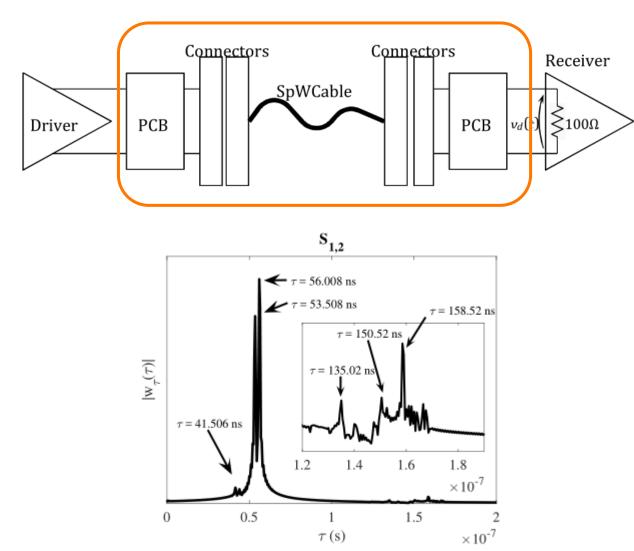
SpaceWire cable link:

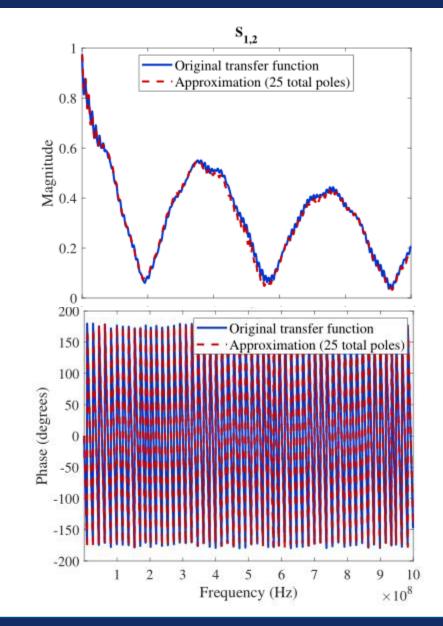




Application Examples – III ($S_{1,2}$)

SpaceWire cable link:



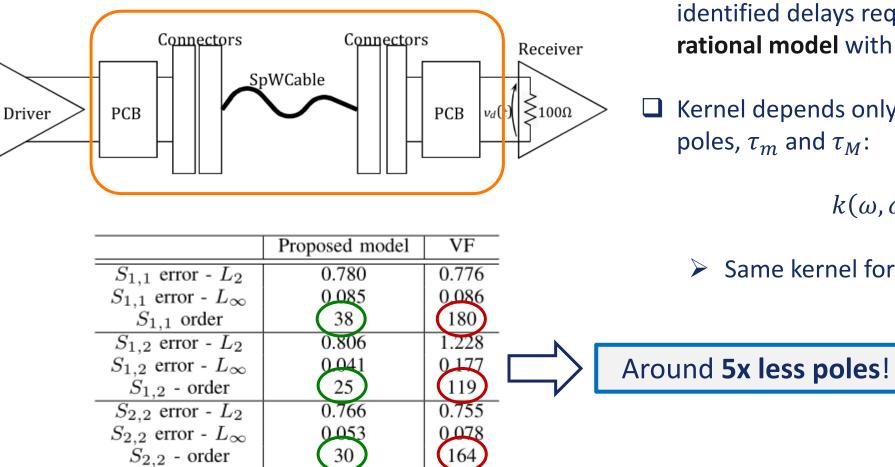


Application Examples – III (Summary)

SpaceWire cable link:

EMC

:: Group



All the delayed-rational models built with the identified delays require less poles than a pure rational model with similar accuracy

□ Kernel depends only on **frequency points**, chosen poles, τ_m and τ_M :

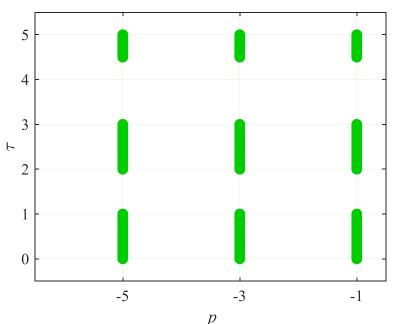
 $k(\omega, \omega_k; \boldsymbol{p}, \tau_m, \tau_M)$

Same kernel for all the 3 terms of the matrix!

- Delayed-rational models allow reducing the complexity of models of distributed systems. Examples showed a reduction of 2.5-5 times in the total number of poles when comparing with rational models.
- ML kernel-based regression (e.g., Least-Squares Support Vector Machine (LS-SVM)) can be adopted for the estimation of the dominant delays in distributed systems
- The LS-SVM approach provides a very accurate identification of the network delays (comparable with Hilbert transform when applicable and with Gabor transform method for multiple delays), and generates a rational approximation with a number of poles significantly reduced w.r.t. conventional fitting methods

N.B:

The proposed methodology for the delay estimation is extremely <u>flexible</u>, i.e., poles and delay interval can be changed as the knowledge about the system increases. E.g., the model can consider multiple delay intervals:



Thank you very much for the attention!

This Photo by Unknown Author is licensed under CC BY-SA

Date: 01-Sep-2020

Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

[1] R. Achar and M. S. Nakhla, "Simulation of high-speed interconnects," in *Proceedings of the IEEE*, vol. 89, no. 5, pp. 693-728, May 2001, doi: 10.1109/5.929650.

[2] S. N. Lalgudi, E. Engin, G. Casinovi and M. Swaminathan, "Accurate Transient Simulation of Interconnects Characterized by Band-Limited Data With Propagation Delay Enforcement in a Modified Nodal Analysis Framework," in *IEEE Transactions on Electromagnetic Compatibility*, vol. 50, no. 3, pp. 715-729, Aug. 2008, doi: 10.1109/TEMC.2008.924394.

[3] A. Chinea, P. Triverio and S. Grivet-Talocia, "Delay-Based Macromodeling of Long Interconnects From Frequency-Domain Terminal Responses," in *IEEE Transactions on Advanced Packaging*, vol. 33, no. 1, pp. 246-256, Feb. 2010, doi: 10.1109/TADVP.2008.2010525.

[4] A. Chinea *et al.*, "Signal Integrity Verification of Multichip Links Using Passive Channel Macromodels," in *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 1, no. 6, pp. 920-933, June 2011, doi: 10.1109/TCPMT.2011.2138136.

[5] M. Sahouli and A. Dounavis, "Delay Extraction-Based Modeling Using Loewner Matrix Framework," in *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 7, no. 3, pp. 424-433, March 2017, doi: 10.1109/TCPMT.2017.2650138.

[6] Cristianini, N., & Shawe-Taylor, J. *An Introduction to Support Vector Machines and Other Kernel-based Learning Methods*. Cambridge: Cambridge University Press, 2000.

[7] Johan A K Suykens et al. *Least Squares Support Vector Machines*. Default Book Series. November 2002.

[8] R. Mandrekar and M. Swaminathan, "Causality enforcement in transient simulation of passive networks through delay extraction," *Proceedings. 9th IEEE Workshop on Signal Propagation on Interconnects, 2005.*, Garmisch-Partenkirchen, Germany, 2005, pp. 25-28, doi: 10.1109/SPI.2005.1500884.