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❑ Electrical interconnects are responsible for a considerable part of signal degradation [1]

Signal Propagation Effects in Interconnects

Interconnect models are essential to predict signal integrity of the channel during the design 
phase (via simulations) without requiring expensive prototyping→ We need a model!!!

▪ Distortion (bits propagate and get distorted)

▪ Reflection (bits bounce back at all discontinuities)

▪ Crosstalk (the transmitted bits appear also on the other traces)
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Characterization

❑Usually, interconnects are characterized by tabulated frequency data obtained from 
electromagnetic simulations or measurements

𝑓 𝐻(𝑗𝜔)

0 𝐻(0)

𝑓1 𝐻(𝑓1)

𝑓2 𝐻(𝑓2)

𝑓3 𝐻(𝑓3)

⋮ ⋮

Why do we need a model? 
We already have a characterization of the linear interconnects
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Terminations

❑ The link is made of wires/PCB traces (linear), while the terminations contain drivers, 
receivers, LDO and other nonlinear components

interconnect
model
(linear)

Interconnect models obtained from frequency-domain data should 
also be compatible with time-domain circuit simulations

non-linear 
transceiver

non-linear 
transceiver

➢ Due to nonlinear elements, signal integrity simulations must be carried out in time-domain
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𝐻 𝑗𝜔 ≈ ෩𝐻 𝑗𝜔 =෍

𝑗=1

𝑛𝑝
𝑟𝑗

𝑗𝜔 − 𝑝𝑗
+ 𝑟0

Usual Approach

❑ Rational Models are naturally adopted to model linear structures

residues

poles

❑ It is a linear expansion of rational basis functions

➢ Linear w.r.t. residues and nonlinear w.r.t. poles → iterative pole reallocation is used 
to select the optimal poles

➢ An equivalent circuital representation is available

N.B. 1 pole = 1 dynamic element in the circuit (capacitor/inductor) 



Date: 01-Sep-2020 6/30Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Accuracy versus Poles

Very 
inaccurate

Simple model
(few poles)

Complex model
(many poles)

Circuital models sought for should be accurate and fast to simulate!!!
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Larger System

➢ Supposing a simulation of 100 interconnects 
that need 161 poles each to achieve an 
accurate model 

➢ 100 x 161 poles = 16,100 poles

➢ 16,100 dynamic elements in the simulation 
(capacitors/inductors)

➢ 16,100 additional states in the system

If the model requires too many poles, its 
simulation will be inefficient!!!
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Delayed Rational Model (DRM)

Rational Model:

෩𝐻 𝑗𝜔 = ෍

𝑗=1

𝑛𝑝
𝑟𝑖𝑗

𝑗𝜔 − 𝑝𝑖𝑗
+ 𝑟0

Delayed

෍

𝑖=1

𝑛𝜏

𝒆−𝒋𝝎𝝉𝒊

residues

poles
delays

Advantages:

✓ Generally a lower number of poles w.r.t. the 
RM is required → faster simulation time

✓ Causality of the system is guaranteed by 
making 𝜏𝑖 > 0

✓ Linear with respect to the residues

✓ Explicit representation of the delayed 
behavior of the transfer function

Disadvantages:

x Unpractical to estimate both the poles
and the delays together → usually 
delays are estimated first and poles 
afterwards

x Generally requires optimization of the 
parameters to obtain a good model

❑ Linear expansion of delayed rational basis functions

Refs. [3]-[5]
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How to find the appropriate poles and delays?

❑ Let us consider, as a test function, the transfer function

𝐻 𝑗𝜔 =
1

𝑗𝜔 + 3
𝑒−𝑗3𝜔

❑ We can build a DRM with poles and delays chosen on a grid in a 𝑝 − 𝜏 plane (𝑝 is restricted to be real, for 
the sake of visualization)

❑ The nodes of the grid provide the candidate poles and delays to be considered with the delayed rational 
model: 

To be estimated

From the grid

Linear parameter Nonlinear parameters

𝜑 𝜔; 𝑝, 𝜏 =
𝑐𝑖𝑗

𝑗𝜔 − 𝑝𝑖𝑗
𝑒−𝑗𝜔𝜏𝑖

Basis functions:

෩𝐻 𝑗𝜔 =෍𝑤 𝜑 𝜔; 𝑝, 𝜏 + 𝑏

෩𝐻 𝑗𝜔 =෍

𝑖=1

𝑛𝜏

෍

𝑗=1

𝑛𝑝,𝑖
𝑟𝑖𝑗

𝑗𝜔 − 𝑝𝑖𝑗
𝑒−𝑗𝜔𝜏𝑖 + 𝑟0
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Grid Approximation – (a)

❑ Let us try to fit 𝐻 𝑗𝜔 =
1

𝑗𝜔+3
𝑒−𝑗3𝜔 by making a grid in a 𝑝 − 𝜏 plane: 

❑ If the grid captures exact pole and delay

• (a) - Approx. model is essentially perfect
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Grid Approximation – (b)

❑ Let us try to fit 𝐻 𝑗𝜔 =
1

𝑗𝜔+3
𝑒−𝑗3𝜔 by making a grid in a 𝑝 − 𝜏 plane: 

❑ If the grid captures only the exact delay

• (b) – Approx. model is still very good
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Grid Approximation – (c)

❑ Let us try to fit 𝐻 𝑗𝜔 =
1

𝑗𝜔+3
𝑒−𝑗3𝜔 by making a grid in a 𝑝 − 𝜏 plane: 

❑ If the grid captures only the exact pole

• (c) – Approx. model is clearly inaccurate
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Grid Approximation - Summary

❑ Three cases considered:

• (a) – Approx. model is essentially perfect
• (b) – Approx. model is still very good
• (c) – Approx. model is clearly inaccurate

❑ A larger number of poles can compensate a non-exact 
estimation of the poles, but a wrong delay estimation generates 
an inaccurate model, even if it uses the right poles

❑ Let us try to fit 𝐻 𝑗𝜔 =
1

𝑗𝜔+3
𝑒−𝑗3𝜔 by making a grid in a 𝑝 − 𝜏 plane:

An accurate delay estimation is essential to obtain an 
accurate delayed rational model
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Grid Approximation – Extreme Case

❑ The DRM should contain the exact delay of the transfer function it approximates

෩𝐻 𝑗𝜔 =෍

𝑖=1

𝑛𝜏

෍

𝑗=1

𝑛𝑝,𝑖
𝑟𝑖𝑗

𝑗𝜔 − 𝑝𝑖𝑗
𝑒−𝑗𝜔𝜏𝑖 + 𝑟0

∞

The only way to ensure 
that an unknown delay is 
included in the model is 

by considering an infinite 
number of delays

How can we estimate a model with an 
infinite number of terms?  
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Machine learning (ML)

෩𝐻 𝑗𝜔 = ෍

𝑘=1

𝐾

𝛼𝑘 𝑘(𝜔,𝜔𝑘) + 𝑏

# of training samples

𝑘 𝜔,𝜔𝑘 = 𝝋 𝜔;𝒑, 𝝉 , 𝝋∗ 𝜔𝑘; 𝒑, 𝝉

❑ Support Vector Machines (SVMs) [6][7]

❑ Kernel is linked to a vector with the basis functions of a regression model → vector can be 
infinite dimensional!!! [6]

Inner product Basis functions 
depending on the 
considered poles 
and delays

Handwriting recognition Face detection

➢ Historical applications:

❑ Model:
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Duality

෩𝐻 𝑗𝜔 = ෍

𝑘=1

𝐾

𝛼𝑘 𝑘(𝜔,𝜔𝑘) + 𝑏 ෩𝐻 𝑗𝜔 = 𝒘,𝝋 𝜔; 𝒑, 𝝉 + 𝑏𝑤 =෍

𝑘

𝛼𝑘𝜑
∗(𝜔𝑘)

❑ The Least Squares Support Vector Machine (LS-SVM) regression has two equivalent 
formulations [7]:

෩𝐻 𝑗𝜔 =෍

𝑖,𝑗

𝑤𝑖𝑗 𝜑 𝜔; 𝑝𝑖𝑗 , 𝜏𝑖 + 𝑏

Primal Space:Dual Space

➢ Non-parametric model → number of 
terms equal to the number of 
samples

➢ Parametric model → number of 
terms equal to the number of basis 
functions
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Equivalence with DRM

෩𝐻 𝑗𝜔 =෍𝑤(𝜏𝑖 , 𝑝𝑖𝑗) 𝜑 𝜔; 𝑝𝑖𝑗 , 𝜏𝑖 + 𝑏

෩𝐻 𝑗𝜔 =෍

𝑖=1

𝑛𝜏

෍

𝑗=1

𝑛𝑝,𝑖
𝑟𝑖𝑗

𝑗𝜔 − 𝑝𝑖𝑗
𝑒−𝑗𝜔𝜏𝑖 + 𝑟0

❑ Weights 𝒘 are proportional to the residues of a delayed-rational model

❑ By looking at the values of 𝒘 as a function of 𝝉, we are able to see for which values of 𝜏 the 𝑤
is larger, i.e., the dominant propagation delays of the system

DRM:

ML model:
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Application of the Method

❑ The identified propagation delays can be employed 
to build low-order delayed rational models Identify delays with 

the proposed 
method

Employ such delays to 
obtain an accurate and 

efficient DRM

෩𝐻 𝑗𝜔 =෍

𝑖=1

𝑛𝜏

෍

𝑗=1

𝑛𝑝,𝑖
𝑟𝑖𝑗

𝑗𝜔 − 𝑝𝑖𝑗
𝑒−𝑗𝜔𝜏𝑖 + 𝑟0
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Application Examples – I 

❑ Known transfer function:

𝐻 𝑗𝜔 =
1

𝑗𝜔 + 60 + 20𝑗
+

1

𝑗𝜔 + 60 − 20𝑗
𝑒−𝑗0.1𝜔 +

0.075

𝑗𝜔 + 100
𝑒−𝑗0.3𝜔

𝜏1 𝜏2

• Real and complex-conjugate poles

• First delay is the same as identified by Hilbert 
transform [8]

• Overall curve is like the one obtained by the 
Gabor transform [3]
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Application Examples – II 

𝐻 𝑗𝜔 =
𝑉𝑜 𝑗𝜔

𝑉𝑖 𝑗𝜔

❑ Circuit with multiple transmission lines:

❑ Three paths from input to output, wave reflection 
at the discontinuities

❑ Multiple delays expected in 𝐻 𝑗𝜔

❑ Accuracy similar to Hilbert (1st delay) and Gabor transforms (overall shape)



Date: 01-Sep-2020 21/30Machine Learning Applied to the Blind Identification of Multiple Delays in Distributed Systems

Application Examples – II (with Noise)

𝐻 𝑗𝜔 =
𝑉𝑜 𝑗𝜔

𝑉𝑖 𝑗𝜔

❑ Circuit with multiple transmission lines:

❑ Three paths from input to output, wave reflection 
at the discontinuities

❑ Multiple delays expected in 𝐻 𝑗𝜔

❑ Good performance with noisy data

❑ Accuracy similar to Hilbert (1st delay) and Gabor transforms (overall shape)
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Application Examples – II (Summary)

❑ Circuit with multiple transmission lines:

• Five delays and 20 poles distributed among them are sufficient to 
accurately model the original transfer function

• A rational model with similar accuracy requires 54 poles
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Application Examples – III 

❑ SpaceWire (SpW) cable link:

❑ Scattering matrix of two wires of the link is considered:

𝑆 𝑗𝜔 =
𝑆1,1(𝑗𝜔) 𝑆1,2(𝑗𝜔)

𝑆2,1(𝑗𝜔) 𝑆2,2(𝑗𝜔)

❑ Cable channel linking a driver and a receiver through:

➢ Striplines
➢ 9-pin Micro-D connectors
➢ SpW cable

❖ 4 twisted pairs of wires
❖ 1 inner shield around each of the pairs
❖ 1 outer shield Credit: Rick Mastracchio/NASA/Twitter
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Application Examples – III (𝑆1,1)

❑ SpaceWire cable link:
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Application Examples – III (𝑆2,2)

❑ SpaceWire cable link:
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Application Examples – III (𝑆1,2)

❑ SpaceWire cable link:
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Application Examples – III (Summary)

❑ SpaceWire cable link:

❑ All the delayed-rational models built with the 
identified delays require less poles than a pure 
rational model with similar accuracy

❑ Kernel depends only on frequency points, chosen 
poles, 𝜏𝑚 and 𝜏𝑀:

𝑘 𝜔,𝜔𝑘; 𝒑, 𝜏𝑚, 𝜏𝑀

➢ Same kernel for all the 3 terms of the matrix!

Around 5x less poles!
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Conclusions

❑ Delayed-rational models allow reducing the complexity of models of distributed systems. Examples showed a 
reduction of 2.5-5 times in the total number of poles when comparing with rational models. 

❑ ML kernel-based regression (e.g., Least-Squares Support Vector Machine (LS-SVM)) can be adopted for the 
estimation of the dominant delays in distributed systems

❑ The LS-SVM approach provides a very accurate identification of the network delays (comparable with Hilbert 
transform – when applicable – and with Gabor transform method for multiple delays), and generates a rational 
approximation with a number of poles significantly reduced w.r.t. conventional fitting methods

N.B: 
The proposed methodology for the delay estimation is 
extremely flexible, i.e., poles and delay interval can be 
changed as the knowledge about the system increases. E.g., 
the model can consider multiple delay intervals:
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Thank you!

This Photo by Unknown Author is licensed under CC BY-SA

Thank you very much for the attention!

Questions?

https://commons.wikimedia.org/wiki/File:Alarm_Clock_Vector.svg
https://creativecommons.org/licenses/by-sa/3.0/
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