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Objectives

URSI GASS 2020

 Assess and identify most relevant features that influence the exposure scenarios 

and characterize the uncertainty and variability of the real exposure scenarios with 

advanced statistical approaches.

 In particular:

 PART ONE: application of stochastic dosimetry to estimate indoor children 

exposure to RF generated by WLAN;

 PART TWO: application of K-means clustering to identify recurrent patterns of 

indoor residential exposure to extremely low-frequency (ELF) field in children.



Part 1 - An application of Stochastic Dosimetry to estimate indoor 
children exposure to WLAN source

URSI GASS 2020PART 1 – WLAN exposure
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EMF human exposure in real conditions depends on a great degree on several of 
parameters; each of these parameters is intrinsically affected by variability and 
uncertainty. 
Thus to assess realistic EMF exposure it would be requested to run a high number of 
time-consuming deterministic simulations to take into account the variability of the 
parameters.
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Stochastic dosimetry – rationale
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A surrogate model is an approximation of the original model M. The procedure follows 3 steps:

 A probabilistic model of input parameters has to be defined, i.e. the input parameters X are modelled 
by a random vector;

 A limited set of runs of the original model M called experimental design has to be estimated by 
computational methods;

 A surrogate model has to be designed using a proper statistical method.

Stochastic dosimetry uses advanced statistics to build surrogate models able to estimate the distribution 
of the EMF exposure quantities of interest, considering the variability of the exposure scenario.

Stochastic dosimetry – rationale
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Input parameters: 

• Horizontal location L of the source
• Source height Z 
• Human Body coordinates x and y
• Human body rotation ϴ

L [0, 13.59] m
Z [0.25, 2] m
X [0.3, 3.7] m
Y [0.3, 2.7] m
θ [0, 359] °

Range of variations

Whole-Body SAR (WB SAR) induced by a WLAN source (operating at 2.4 GHz) has been 
assessed in child tissues when varying the position of the source on the wall and the 
position of the child in a 3x4 m2 room by using surrogate models based on Low Rank 
Tensor Approximation (LRA).

Stochastic dosimetry – An application of Low Rank Tensor 
Approximation (LRA) to estimate indoor children exposure to 
WLAN source
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Design of the experiment

• Source: WLAN 2.4 GHz

• Anatomical model: Eartha, 8 years old girl 

• Latin Hypercube Sampling

• N = 350 simulations 

The SAR values were computed by combination of Spherical Wave 
Expansion (SWE) and FDTD * 

* Y. Pinto, and J. Wiart. "Statistical analysis and surrogate modeling of indoor exposure induced from a WLAN source." Antennas and 
Propagation (EUCAP), 2017 11th European Conference on. IEEE, 2017.

Analysis of the exposure
• Whole-Body Specific Absorption Rate (WB SAR),

Low Rank Tensor Approximation (LRA) to estimate indoor children 
exposure to WLAN source
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A Low Rank Tensor canonical Approximation of Y =M(X) has the form
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LRA can be built with greedy approach based on alternative least-square minimization,
that involves sequentially updating of the polynomial coefficients along separate
dimensions, and progressive increase of the rank by successively adding rank-one
components.

The greedy approach consists of 2 steps:
• correction step: where a rank-1 tensor is built
• updating step: the normalizing coefficients are determined/updated.

Low Rank Tensor Approximation (LRA) to estimate indoor children 
exposure to WLAN source
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Worth noting:
• positive-skewed shape;
• WB SAR values showed mean, median and 

max values equal to 0.13 mW/kg, 0.07 
mW/kg, and 1.40 mW/kg;

• Quantile Coefficient of Dispersion (QCD) 
equal to 65%  high variability in WB SAR 
as a function of the relative positions 
between the WLAN source and the child;

• The probability density function could be 
approximated by a Gamma distribution with 
parameters a = 1.04, and b = 0.12, (with R2 = 
0.97).

Histogram and probability density function of the WB SAR values obtained in 100,000 random 
positions of the WLAN source and the child by the LRA model. 

Low Rank Tensor Approximation (LRA) to estimate indoor children 
exposure to WLAN source - Results

URSI GASS 2020PART 1 – WLAN exposure



Part 2 - An application of Cluster Analysis to assess indoor 
residential exposure to extremely low-frequency (ELF) field in 
children

URSI GASS 2020PART 2 – ELF magnetic field exposure



Cluster analysis - rationale

 Cluster analysis aims to:

• Group similar data objects into clusters based on similarities between the data

 It is an unsupervised learning approach:

• no predefined clusters (i.e., no hints on what could be the clusters because 

learning is achieved by observation vs. learning by examples: supervised)

 Typical applications:

• Exploratory analysis, as a stand-alone tool to infer new/deeper knowledge on 

the data;

• Pre-processing step for variable reduction.

URSI GASS 2020PART 2 – ELF magnetic field exposure



Cluster analysis - rationale

Starting from the observation of the measurements data

 Is it possible to describe how the data are organized or 

clustered, that is, to find recurrent patterns in the original 

data sample?

Recurrent 
patterns

Infer new/deeper 
knowlegde

Cluster 
analysis

Measurement 
data sample
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Cluster analysis – K-means

• k-means is an unsupervised Machine Learning problem.

• The goal is to partition the observations into groups (“clusters”) so that the 

distance from the center of the cluster (“centroid”) within those assigned to the 

same cluster tend to be smaller than those in different clusters.

Observations:

Variables:

Distance between values of 
the j-th variable:

Overall distance between  
two observations i and i’:

URSI GASS 2020

[Tognola G. et al., ՙUse of Machine Learning in the Analysis of Indoor ELF MF Exposure in 
Children՚, Int. J. Environ. Res. Public Health, 2019]
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Cluster analysis – K-means

Advantages of clustering:

 The properties of data in the cluster are described by using the coordinates of the 

centroid instead of the values of the original data;

 The centroid is the representative of the features of the data in the cluster.

URSI GASS 2020PART 2 – ELF magnetic field exposure



Measured data sample
Data come from the EXPERS study database, subsidized by the French Ministry of Health, EDF and 
RTE, and carried out by Supélec, EDF and RTE.

[Magne et al., JESEE, 2017]

Subjects: 977 children (0-14 yrs, 8.4±4.2 yrs)
Where: in France, during cold season
When: 24h a day
With: personal dosimeters
Measured variables:

More than 50 items, including:
• B field
• characteristics of power transmission lines near measurement point
• starting time, duration and type of activities performed during exposure 

measurement
• house characteristics (size and age)
• family size
• type of heating appliances used at home

URSI GASS 2020PART 2 – ELF magnetic field exposure



Measured data sample (cont.d)
Variables considered in cluster analysis:

URSI GASS 2020

UND: underground cables (number)
low: 400 V (within 40 m)
mid: 20 kV (within 40 m)
high: 63 to 150 kV (within 20 m)
extra high: 225 kV (within 20 m)

OVHD: overhead power lines (number)
low: 400 V (within 40 m)
mid: 20 kV (within 40 m)
high: 63 to 150 kV (within 70-100 m)
extra high: 225 kV (within 125 m)
ultra high: 400 kV (within 200 m)

B field @50Hz: geometric mean of magnetic field (µT), measured indoor, during the day, 50 Hz component

Substations: number of MV/LV (20 kV/400V) substations (within 40 m)

Further variables considered in an association effect analysis on the clusters:
 House heating;
 Residence age;
 Residence type;
 Family size (number of household residents).

PART 2 – ELF magnetic field exposure



K-means results – Centroid analysis
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Worth noting:
 Three clusters are identified: the highest exposures are associated to children 

living close to overhead lines of high (63−150 kV), extra-high (225 kV) and 
ultra-high voltage (400 kV).

[Tognola G. et al., ՙCluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of 
Environmental Variables՚, Int. J. Environ. Res. Public Health, 2019]

Variable
Centroid Coordinate (i.e., mean value of samples in the cluster)

Cluster 1 Cluster 2 Cluster 3

UNDlow (n. of lines) 1.6 13.9 3.0
UNDmid (n. of lines) 0.3 5.8 0.7
UNDhigh (n. of lines) 0.0 0.0 0.0
UNDextra (n. of lines) 0.0 0.0 0.0
OVHDlow (n. of lines) 1.6 1.0 1.4
OVHDmid (n. of lines) 0.2 0.0 0.1
OVHDhigh (n. of lines) 0.5 0.0 0.0
OVHDextra (n. of lines) 0.5 0.0 0.0
OVDHultra (n. of lines) 0.4 0.0 0.0

Substation (n.) 0.2 0.9 0.0
B (µT)

Q1
Q3

0.126
0.045
0.225

0.036
0.010
0.050

0.025
0

0.020
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K-means results – Centroid analysis
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Worth noting:
 mid exposure levels associated to children living close to underground 

networks of low (400 V) and mid voltage (20 kV) and substations (20 kV/400 V);

 the lowest exposures being associated to children living more distant from 
electric networks.

[Tognola G. et al., ՙCluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of 
Environmental Variables՚, Int. J. Environ. Res. Public Health, 2019]

Variable
Centroid Coordinate (i.e., mean value of samples in the cluster)

Cluster 1 Cluster 2 Cluster 3

UNDlow 1.6 13.9 3.0
UNDmid 0.3 5.8 0.7
UNDhigh 0.0 0.0 0.0
UNDextra 0.0 0.0 0.0
OVHDlow 1.6 1.0 1.4
OVHDmid 0.2 0.0 0.1
OVHDhigh 0.5 0.0 0.0
OVHDextra 0.5 0.0 0.0
OVDHultra 0.4 0.0 0.0
Substation 0.2 0.9 0.0

B (µT)
Q1
Q3

0.126
0.045
0.225

0.036
0.010
0.050

0.025
0

0.020
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Association effect analysis – Effect of Heating type

Heating Type Cluster 1 Cluster 2 Cluster 3 Heating Marginal 

Non-electric 
0.69 {6} 

(0.85) {7} 
9.94 {86} 

(9.37) {81} 
50.75 {439} 

(51.17) {443} 61.38 {531} 

Mixed 0.23 {2} 
(0.24) {2} 

0.92 {8} 
(2.66) {23} 

16.30 {141} 
(14.55) {126} 

17.45 {151} 

Electric 
0.47 {4} 

(0.30) {3} 
4.40 {38} 

(3.23) {28} 
16.30 {141} 

(17.63) {152} 21.17 {183} 

Cluster marginal 1.39 {12} 15.26 {132} 83.35 {721} 100.00 {865} 

 (): percentage expected from uniform distribution (i.e., no association with the cluster)
{}: number of cases

Worth noting:
 electric heating: mostly associated to Cluster 2 (mid residential exposures);
 mixed heating: mostly associated to Cluster 3 (lower residential exposures). 

URSI GASS 2020

Percentage of children across Clusters and heating type

[Tognola G. et al., ՙCluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of 
Environmental Variables՚, Int. J. Environ. Res. Public Health, 2019]
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Association effect analysis – Effect of Residence type

Worth noting:
 individual and terraced homes: mostly associated to Cluster 3 (lower 

residential exposures);
 big building: mostly associated to Cluster 2 (mid residential exposures). 

Residence Type Cluster 1 Cluster 2 Cluster 3 Residence Marginal 

Individual 
1.13 {10} 

(0.68) a {6} 
3.28 {29} 

(8.01) {71} 
45.81 {405} 

(41.53) {367} 50.22 {444} 

Terraced 0.12 {1} 
(0.26) {2} 

1.58 {14} 
(3.07) {27} 

17.53 {155} 
(15.90) {141} 

19.23 {170} 

Apartment in small building 
0 {0} 

(0.14) {1} 
2.49 {22} 

(1.62) {14} 
7.69 {68} 

(8.42) {75} 10.18 {90} 

Apartment in big building 0.11 {1} 
(0.28) {3} 

8.60 {76} 
(3.25) {29} 

11.66 {103} 
(16.84) {148} 

20.37 {180} 

Cluster marginal 1.36 {12} 15.95 {141} 82.69 {731} 100.00 {884} 

 

URSI GASS 2020

Percentage of children across Clusters and residence type

(): percentage expected from uniform distribution (i.e., no association with the cluster)
{}: number of cases

[Tognola G. et al., ՙCluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of 
Environmental Variables՚, Int. J. Environ. Res. Public Health, 2019]
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Association effect analysis – Effect of Family size

 Family size was found to differ with the clusters (p < 0.02; 2 = 8.63);

 Family of greater size for children assigned to Cluster 2 (mid exposure level)
than in Cluster 3 (lower exposure level).

Residence age has no statistical significant association with the clusters. 
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Conclusions
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 Stochastic dosimetry based on LRA gave a complete description of the 
exposure scenario, without limiting the assessment to few “worst case” 
conditions. 

 Although not eliminating the need of simulations, the LRA approach used 
about 0.35% of the time that would be needed using only computational 
methods. 

 As to cluster analysis, it was useful to perform exploratory analysis on 
exposure data and infer new and deeper knowledge on the variables that 
are more important on the exposure patterns of ELF magnetic field in 
children.


