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INTRODUCTION

An approach based on the reduction to eigenvalue problems for operator pencils considered in Sobolev spaces was
proposed by Smirnov in 1. General theory of polynomial operator-functions called operator pencils is sufficiently
well elaborated. Operator pencils were applied to the analysis of electromagnetic problems in 23.
Open waveguide structures were investigated by a number of authors 45. However, for open (unshielded)
structures, a complete theory of wave propagation is not constructed. In this case the problem becomes much
more complicated (due to the non-compactness of the corresponding operators). The article deals with open
inhomogeneous metal-dielectric waveguide structures i.e. the case of an unbounded exterior domain is considered.
The first results on the investigation of such problems were recently obtained in 67 for the polarized waves
propagating in a circular waveguide.
In this problem we have to analyze not the operator pencil, but an operator-function. Nevertheless, it is possible
to study the properties of the operator-function in sufficient detail and obtain results on its spectrum. The
discreteness of the spectrum of the problem of surface waves is proved in the article. Note that we consider
waves that decrease at a distance from the waveguide (we impose the corresponding conditions at infinity).
Other types of waves are not considered. This approach was used to study the shielded waveguide structures as
well.

1Yu.G. Smirnov, “Application of the operator pencil method in the eigenvalue problem for partially,” Doklady AN SSSR, 312,
1990, p. 597–599.

2A.L. Delitsyn, “An approach to the completeness of normal waves in a waveguide with magnitodielectric filling,” Differential
Equations, 36, 2000, p. 695–700.

3A.S. Zilbergleit, Yu.I. Kopilevich, “Spectral theory of guided waves,” London: Inst. of Phys. Publ, 1966.
4A.L. Delitsyn, “An approach to the completeness of normal waves in a waveguide with magnitodielectric filling,” Differential

Equations, 36, 2000, p. 695–700.
5L. Levin, “Theory of waveguides,” London: Newnes-Butterworths, 1975.
6Yu.G. Smirnov, E. Smolkin, “Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide,”

Differential Equations, 53(10), 2017, p. 1168–1179.
7Yu.G. Smirnov, E. Smolkin, M.O. Snegur, “Analysis of the Spectrum of Azimuthally Symmetric Waves of an Open Inhomogeneous

Anisotropic Waveguide with Longitudinal Magnetization,” Computational Mathematics and Mathematical Physics, 58(11), 2018, pp.
1887–1901.

2 / 18



Statement of the problem on surface waves

Consider the three-dimensional space R3 with the cylindrical coordinate system Oρϕz. The space is filled with
an isotropic source-free medium with permittivity ε = ε0 ≡ const and permeability µ = µ0 ≡ const, where
ε0 and µ0 are permittivity and permeability of vacuum. An inhomogeneous metal-dielectric waveguide with a
cross-section

Σ := {(ρ, ϕ, z) : r0 6 ρ 6 r, 0 6 ϕ < 2π}

and a generating line parallel to the axis Oz is placed in R3.
The cross section of the waveguide, which is perpendicular to its axis, consists of two concentric circles of radii
r0 and r (see Fig. .1): r is the radii of the internal (perfectly conducting) cylinder, and r − r0 is the thickness
of the external (dielectric) cylindrical shell. The geometry of the problem is shown in Fig. .1.

Рис. .1: Geometry of the problem.
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Statement of the problem on surface waves

The problem on surface waves in an inhomogeneous metal-dielectric waveguide structure is the problem of
finding nontrivial running wave solutions of the homogeneous system of Maxwell equations, i.e., solutions with
dependence of the from eimϕ+iγz on the coordinates ϕ and z, along which the structure is regular,{

rotH = −iε̃E,
rotE = iµ̃H,

(1)

E = (Eρ(ρ) eρ + Eϕ(ρ) eϕ + Ez(ρ) ez) eimϕ+iγz,

H = (Hρ(ρ) eρ +Hϕ(ρ) eϕ +Hz(ρ) ez) eimϕ+iγz,
(2)

with boundary conditions for tangential electric components on perfectly conducting surfaces (ρ = r0)

Eϕ(r0) = 0, Ez(r0) = 0, (3)

transmission conditions for tangential electric and magnetic components on surfaces of “jump” of permittivity
and permeability (ρ = r)

[Eϕ]|r = 0, [Ez]|r = 0, [Hϕ]|r = 0, [Hz]|r = 0, (4)

the finite energy condition
∞∫
r0

(ε̃|E|2 + µ̃|H|2)dρ <∞, (5)

and the radiation condition at infinity: the electromagnetic field decays as o(ρ-1/2) for ρ → ∞.
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Statement of the problem on surface waves

The Maxwell system (1) is written in the normalized form. The passage to dimensionless variables has been

carried out; namely, k0ρ→ ρ, γ → γ
k0
,

√
µ0

ε0
H→ H, E→ E, where k20 = ωε0µ0. (The time factor e−iωt is

omitted everywhere.)
We assume that the permittivity and permeability in the entire space have the form

ε̃ =

{
ε (ρ) , r0 ≤ ρ ≤ r,
1, ρ > r,

and µ̃ =

{
µ (ρ) , r0 ≤ ρ ≤ r.
1, ρ > r.

We also assume that ε(ρ) > 1 and µ(ρ) > 1 are twice continuously differentiable function on the segment
[r0, r], i.e., ε(ρ) ∈ C2[r0, r] and µ(ρ) ∈ C2[r0, r], Im ε(ρ) = 0, Imµ(ρ) = 0.
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Statement of the problem on surface waves

The problem on normal waves is an eigenvalue problem for the Maxwell equations with spectral parameter γ,
which is the normalized propagation constant of GL.
Rewrite system (1) in the expanded form and express the functions Eρ, Hρ, Eϕ, Hϕ via the functions Ez and
Hz from the first, second, fourth, and fifth equations in system (1)

Eρ =
mµ̃Hz − iγρE′z

ρκ̃2
, Hρ = − iγρH

′
z +mε̃Ez
ρκ̃2

,

Eϕ =
γmEz + iρµ̃H ′z

ρκ̃2
, Hϕ =

γmHz − iρε̃E′z
ρκ̃2

,

(6)

where κ̃2 = γ2 − ε̃µ̃.
It follows from Eqs. (6) that the normal wave field in the waveguide can be represented with the use of two
scalar functions

ue := iEz(ρ), um := Hz(ρ). (7)
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Statement of the problem on surface waves

Thus, the problem has been reduced to finding the longitudinal components ue and um of the electric and
magnetic fields. Throughout the following, ( · )′ stands for differentiation with respect to ρ.
We have the following eigenvalue problem for the longitudinal field components ue and um: find γ ∈ C such
that, for given m ∈ Z, there exist nontrivial solutions of the system of differential equations

(
ε̃ρ

κ̃2
u′e

)′
− ε̃

ρ

(
ρ2 +

m2

κ̃2

)
ue = γm

(ε̃µ̃)′

κ̃2
um,(

µ̃ρ

κ̃2
u′m

)′
− µ̃

ρ

(
ρ2 +

m2

κ̃2

)
um = γm

(ε̃µ̃)′

κ̃2
ue,

(8)

satisfying the boundary conditions for ρ = r0

ue(r0) = 0, u′m(r0) = 0, (9)

transmission conditions for ρ = r
[ue]|r = 0, [um]|r = 0,

γm
[ue
κ̃2

]∣∣∣
r
−
[
ρµ̃u′m
κ̃2

]∣∣∣∣
r

= 0,

γm
[um
κ̃2

]∣∣∣
r
−
[
ρε̃u′e
κ̃2

]∣∣∣∣
r

= 0,

(10)

and also with the condition of boundedness of the field in any finite domain and the decay condition at infinity.
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Statement of the problem on surface waves

Once we determine the longitudinal field components ue and um by solving problem (8)–(10), we can find the
transverse components by formulas (6). The field (E,H) thus obtained satisfies all conditions (1)–(5). The
equivalence of reduction to problem (8)–(10) is not valid only for γ2 = ε̃µ̃; in this case it is necessary to study
the system (1) directly.
For ρ > r, we have ε̃ = 1, µ̃ = 1; in view of the condition at infinity, we obtain a solution of the system (8) in
the form {

ue(ρ; γ,m) = C1Km(κ1ρ),

um(ρ; γ,m) = C2Km(κ1ρ),
(11)

where κ2
1 = γ2 − 1 and Km is the modified Bessel function (the Macdonald function) [8]; C1 and C2 are

constants.
The function κ1(γ) is analytic in the domain

C\ΛK , where ΛK := {γ : Im γ2 = 0, γ2 ≤ 1}.
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Statement of the problem on surface waves

For r0 ≤ ρ ≤ r, we have ε̃ = ε (ρ) and µ̃ = µ (ρ), and from system (8) we obtain the system of differential
equations 

( ερ
κ2
u′e

)′
− ε

ρ

(
ρ2 +

m2

κ2

)
ue = γm

(εµ̃)′

κ2
um,(µρ

κ2
u′m

)′
− µ̃

ρ

(
ρ2 +

m2

κ2

)
um = γm

(εµ)′

κ2
ue

(12)

Definition 1
If for given m there exist nontrivial functions ue and um corresponding to some γ ∈ C such that these
functions are the solutions (11) for ρ > r, are a solution of system (12) for r0 ≤ ρ ≤ r, and satisfy the
transmission conditions (10), then γ is called a characteristic number of problem Pm.

Definition 2
The pair ue and um, |ue|2 + |um|2 6≡ 0, will be called an eigenvector of problem Pm corresponding to the
characteristic number γ ∈ C.
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The Sobolev spaces and variational relation

We will find the solutions ue and um of the problem Pm in Sobolev spaces

H1
0 (r0, r) =

{
f : f ∈ H1 (r0, r) , f(r0) = 0

}
and H1 (r0, r) ,

with the inner product and the norm

(f, g)1 =

r∫
r0

(
f ′g′ + fg

)
dρ,

and ‖f‖21 = (f, f)1 =
r∫
r0

(
|f ′|2 + |f |2

)
dρ.
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The Sobolev spaces and variational relation
Let us give variational formulation of the problem Pm. We multiply equations (12) by arbitrary test functions
ve ∈ H1

0 (r0, r) and vm ∈ H1 (r0, r) (we can assume that these functions are continuously differentiable in
(r0, r)), next we apply Green’s formula, taking into account boundary condition for ρ = r0 and ρ = r, we
obtain a variational relation

γ4

r∫
r0

(ueve + umvm)dρ+ γ2

r∫
r0

(u′ev
′
e + u′mv

′
m)dρ+

+ γ2

r∫
r0

(peu
′
eve + pmu

′
mvm)dρ+ γ2

r∫
r0

r1(ueve + umvm)dρ−

−
r∫

r0

µε(u′ev
′
e + u′mv

′
m)dρ−

r∫
r0

(µε)′ (u′eve + u′mvm)dρ+

+

r∫
r0

(qeu
′
eve + qmu

′
mvm)dρ+

r∫
r0

r2(ueve + umvm)dρ+

+
κ2
r

ε(r)

(
γm

r

χ

κ2
1

um(r)− κ2
r

κ1

K′m(κ1r)

Km(κ1r)
ue(r)

)
ve(r)+

+
κ2
r

µ(r)

(
γm

r

χ

κ2
1

ue(r)−
κ2
r

κ1

K′m(κ1r)

Km(κ1r)
um(r)

)
vm(r)−

− γ
r∫

r0

(feumve + fmuevm)dρ = 0, (13)
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The problem of the spectrum of the operator function

Let H = H1
0 (r0, r)×H1 (r0, r) be the Cartesian product of Hilbert spaces with inner product and norm

(u,v) = (u1, v1)1 + (u2, v2)1, ‖u‖2 = ‖u1‖21 + ‖u2‖21;

u = (u1, u2)T , v = (v1, v2)T .

Then the integrals occurring in (13) can be viewed as sesquilinear forms over the field C defined on the space
H and depending on the arguments u = (ue, um)T and v = (ve, vm)T These forms t define some bounded
linear operators T : H → H by the formula 8

t(u, v) = (Tu, v), ∀v ∈ H,

provided that the forms themselves are bounded.

8T. Kato, “Perturbation Theory for Linear Operators,” New York: Springer-Verlag, 1980.
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The problem of the spectrum of the operator function

Consider the following sesquilinear forms and the corresponding operators (∀v ∈ H):

k(u, v) :=

r∫
r0

(ueve + umvm)dρ = (Ku,v),

κ1(u, v) :=

r∫
r0

(r1 − 1)(ueve + umvm)dρ = (K1u,v),

k2(u, v) :=

r∫
r0

(r2 − µε)(ueve + umvm)dρ = (K2u,v),

k̃(u, v) :=

r∫
r0

(feumve + fmuevm)dρ = (K̃u,v),

a1(u, v) :=

r∫
r0

(u′ev
′
e + u′mv

′
m + ueve + umvm)dρ = (Iu,v),

a2(u, v) :=

r∫
r0

µε(u′ev
′
e + u′mv

′
m + ueve + umvm)dρ = (Au,v),
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The problem of the spectrum of the operator function

b1(u, v) :=

r∫
r0

(peu
′
eve + pmu

′
mvm)dρ = (B1u,v), ∀v ∈ H,

b2(u, v) :=

r∫
r0

(µε)′(u′eve + u′mvm)dρ = (B2u,v),

b3(u, v) :=

r∫
r0

(qeu
′
eve + qmu

′
mvm)dρ = (B3u,v),

s(u, v) =
κ2
r

ε(r)

(
γm

r

χ

κ2
1

um(r)− κ2
r

κ1

K′m(κ1r)

Km(κ1r)
ue(r)

)
ve(r)+

+
κ2
r

µ(r)

(
γm

r

χ

κ2
1

ue(r)−
κ2
r

κ1

K′m(κ1r)

Km(κ1r)
um(r)

)
vm(r) = (Su,v).

The variational problem (13) can be written in the operator form

N(γ)u := (γ4K + γ2
(

K1 + B1 + I− γK̃ + K2 −A− B2 + B3 + S(γ)u = 0.(14)
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Properties of the operator-function

We have reduced the problem on normal waves to the study of spectral properties of the operator function N.
In this connection, we first consider the properties of the operators introduced in the preceding section. The
validity of Lemmas and Theorems demonstrated in 9

Lemma 3
The bounded operator A : H → H is positive definite A ≥ γ2

∗I, where 0 < γ∗ = min
r0≤ρ≤r

√
µ(ρ)ε(ρ).

Lemma 4
The bounded operators K, K1, K2 and K̃ : H → H are compact, and K > 0.

Lemma 5
The operators B1, B2 and B3 : H → H are compact.

Lemma 6
The operator S : H → H is compact.

9Yu.G. Smirnov, E. Smolkin, “Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide,”
Differential Equations, 53(10), 2017, p. 1168–1179.
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Properties of the operator-function

Lemma 7
The operator γ2I−A : H → H is bounded and continuously invertible in the domain

C\ΛE and ΛE := {γ : Im γ = 0, γ∗ ≤ |Re γ| ≤ γ∗},

where 0 < γ∗ = max
r0≤ρ≤r

√
µ(ρ)ε(ρ).

Lemma 8
There exists a γ̃ ∈ R such that the operator N(γ̃) is continuously invertible; i.e., the resolvent set
%(N) := {γ : ∃ N−1(γ) : H → H} of the operator function N(γ̃) is nonempty, %(N) 6= ∅.

Theorem 9
The operator function N(γ) : H → H is bounded, holomorphic, and Fredholm in the domain
Λ = C\ (ΛK ∪ ΛE)

Theorem 10
The spectrum of the operator function N(γ) : H → H is discrete in the domain Λ; i.e., this function has
finitely many characteristic points of finite algebraic multiplicity on any compact set K0 ⊂ Λ.
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CONCLUSION

We have reduced the boundary eigenvalue problem for the Maxwell equations describing surface waves in a
dielectric waveguide to an eigenvalue problem for an operator-function. We have proved fundamental properties
of the spectrum of normal waves including the discreteness and a statement describing localization of eigenvalues
of the operator-function on the complex plane.
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