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INTRODUCTION

The electromagnetic wave diffraction by homogeneous 1 or inhomogeneous (see e.g. 2) cylindrical metal-dielectric
bodies filled with linear medium has been studied intensively since the 1940s. The case of nonlinear filling still
constitutes an unsloved problem. A progress here is associated with recently developed techniques (see 34) for
the analysis of nonlinear boundary value problems for the Maxwell’s and Helmholtz equations.
In 1967, Russian physicist V. G. Veselago predicted an extraordinary electromagnetic (EM) wave phenomenon
which is related to materials with a simultaneously negative permittivity and negative permeability 5. He
hypothetically created a lossless meta-material and showed the extraordinary properties of this material which
is not found in nature, in particular, negative group velocity, negative refraction, the reversal of the Doppler
effect and Cherenkov radiation.
The present study focuses on the analysis of the diffraction of TE waves by an open waveguide, a Goubau
line (GL) (see ), with a nonlinear metamaterial medium. Metamaterial is an artificial material with negative
permittivity and negative permeability. The nonlinearity is expressed by the Kerr law. The main task which
we resolve is to elaborate mathematically correct problem statements for nonlinear differential equations that
enable one to introduce and investigate the problem of diffraction. Such problems (the scattering by cylinders
covered with nonlinear materials) finds some applications in cloaking devices.

1R. W. P. King, Tai Tsun Wu, “The Scattering and Diffraction of Waves,” Harvard University Press, London, UK, 1959.
2Y. Miyazaki, “Scattering and diffraction of electromagnetic waves by inhomogeneous dielectric cylinder,” Radio Science, 16, 1981,

pp. 1009–1014.
3D.V. Valovik, E. Smolkin, “Calculation of the propagation constants of inhomogeneous nonlinear double-layer circular cylindrical

waveguide by means of the Cauchy problem method,” Journal of Communications Technology and Electronics, 58, 2013, pp. 759–767.
4Yu.G. Smirnov, E. Smolkin, “On the existence of non-polarized azimuthal-symmetric electromagnetic waves in circular dielectric

waveguide filled with nonlinear isotropic homogeneous medium,” Wave Motion, 77, 2018, pp. 77–90.
5V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Uspekhi, 10,

1968, pp. 509–514.
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Statement of the problem

The cross section of the waveguide under study perpendicular to its axis consists of two concentric circles of
radii r0 and r (see Fig. 1): r0 is the radii of the internal (perfectly conducting) cylinder, and r − r0 is the
thickness of the external (dielectric) cylindrical shell.

;

Рис. .1: Waveguide Σ, where r0 and r are the radii of the internal (perfectly conducting) and external (dielectric) cylinders,
respectively.
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STATEMENT OF THE PROBLEM

The complex amplitudes E, H of the electromagnetic field satisfy Maxwell’s equations{
rotH = −iωε0ε̃E,
rotE = iωµH,

(1)

have zero tangential components of the electric field on the perfectly conducting surface ρ = r0 and
continuous tangential field components on the media interface ρ = r; here ω is the circular frequency.
We assume that the permittivity in the entire space has the form ε̃ε0, where

ε̃ =

{
−ε2 + α̃|E|2, r0 ≤ ρ ≤ r,
1, ρ > r,

(2)

and |E|2 =
∣∣(Ee−iωt, eρ)∣∣2 +

∣∣(Ee−iωt, eϕ)
∣∣2 +

∣∣(Ee−iωt, ez)∣∣2;(·, ·) is the Euclidean inner product; ε2, α̃ are
real positive constants.
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TE waves

Let us consider TE-polarized waves in the harmonic mode, according to [?],

Ee−iωt = e−iωt(0, Eϕ, 0)T , He−iωt = e−iωt(Hρ, 0, Hz)
T ,

where E,H are complex amplitudes,

Eϕ = Eϕ(ρ)eiγz, Hρ = Hρ(ρ)eiγz, Hz = Hz(ρ)eiγz (3)

and γ is a given quantity.
Let k20 := ω2µε0. Substituting components (3) into (1) and using the notation u(ρ) := Eϕ(ρ) we obtain(

ρ−1 (ρu)′
)′

+
(
k20 ε̃− γ2)u = 0, (4)

where ε̃ is defined by formula (2).
We assume that function u is sufficiently smooth,

u(ρ) ∈ C1 [r0,+∞ ) ∩ C2(r0, r) ∩ C2(r,+∞).

In the domain r0 ≤ ρ ≤ r equation (4) takes the form(
ρu′
)′ − (ρk21 + ρ−1)u = −αρu3, (5)

where α := k20α̃, k21 := k20ε
2 + γ2. In the domain ρ > r equation (4) becomes(

ρu′
)′ − (ρk22 + ρ−1)u = 0, (6)

where k22 := γ2 − k20.
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TE waves

For ρ > r, the solution to equation (6) must be written in the following form

u = ÃI1(k2ρ) + C̃K1(k2ρ), ρ > r. (7)

The incident field is determined by
uI(ρ) = ÃI1(k2ρ), (8)

where I1 is the modified Bessel function (Infeld function) 6 and FI = ÃI1(k2r) is the amplitude of the incident
field (for ρ = r). The reflected field satisfies the radiation conditions of decay at infinity and therefore can be
taken in the following form at ρ > r

uR(ρ) = C̃K1(k2ρ), (9)

where K1 is the modified Bessel function (Macdonald function) and constant FR = C̃K1(k2r) is the amplitude
of the reflected field (for ρ = r). The total field in the region ρ > r is a superposition of the incident, uI , and
reflected, uR, fields,

u = uI + uR, ρ > r. (10)

6M. Abramowitz, I.A. Stegun, “Handbook of Mathematical Functions,” National Bureau of Standards, Washington, USA, 1972.
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TE waves

The amplitude of transmitted field FT (for ρ = r) is a sum of amplitudes of the incident, FI , and reflected,
FR, fields,

FT = FI + FR.

Transmission conditions for the functions u and u′ result from the continuity conditions for the tangential field
components (Eϕ and Hz) and have the form

[u]|ρ=r =
[
u′
]∣∣
ρ=r

= 0,

u|ρ=r0 = 0,
(11)

where [v]|ρ=s = lim
ρ→s−0

v (ρ)− lim
ρ→s+0

v (ρ) is the jump in the limit values of the function at a point s.

Formulate the diffraction problem (problem P ): to find amplitude FR of the reflected field such that, for the
given amplitude FI of the incident field, there are nonzero function u(ρ) defined by formula (10) for ρ > r that
solve the ordinary differential equation (5) for r0 < ρ < r and satisfy transmission conditions (11).
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Numerical method

For the numerical solution of Problem P a method based on the solution to the auxiliary Cauchy problem is
proposed which makes it possible in particular to determine and plot the amplitude of the reflected field, FR,
with respect to the amplitude of the incident field, FI .
Consider the Cauchy problem for the equation (6) with the following initial conditions

u (r) = uI(r) + uR(r) = FI + FR,

u′ (r) = u′I(r) + u′R(r) = FI
I ′1(k2r)

I1(k2r)
+ FR

K′1(k2r)

K1(k2r)
.

(12)

To justify the solution technique, we use classical results of the theory of ordinary differential equations
concerning the existence and uniqueness of the solution to the Cauchy problem and continuous dependence
of the solution on parameters.
Using the transmission condition on the boundary ρ = r0, we obtain the following dispersion equation

∆ (FI , FR) ≡ u (r0) = 0, (13)

where ∆ (FI , FR) is determined explicitly and quantity u (r0) is obtained from the solution to the Cauchy
problem for fixed values of FI and FR.
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Numerical method

Рис. .2: Amplitude of the reflected field FR vs amplitude of the incident field FI in the linear (α = 0, blue) and nonlinear
(red) cases. The values of parameters are γ = 1.15, k20 = 1, r0 = 2, r = 4, ε2 = 4, α = 10−5.
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Numerical method

Рис. .3: Amplitude of the transmitted field FT vs amplitude of the incident field FI in the linear (α = 0, blue) and
nonlinear (red) cases. The values of parameters are γ = 1.15, k20 = 1, r0 = 2, r = 4, ε2 = 4, α = 10−5.
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Numerical method

Рис. .4: Amplitude of the reflected field FR vs amplitude of the incident field FI in the linear (α = 0, blue) and nonlinear
(red) cases. The values of parameters areγ = 1.15, k20 = 1, r0 = 2, r = 4, ε2 = 4, α = 10−3.
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Numerical method

Рис. .5: Amplitude of the transmitted field FT vs amplitude of the incident field FI in the linear (α = 0, blue) and
nonlinear (red) cases. The values of parameters areγ = 1.15, k20 = 1, r0 = 2, r = 4, ε2 = 4, α = 10−3.
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Numerical method

Thus for fixed value of FI , when the number FR = F̃R is such that ∆ (FI , FR) = 0, then FR is the solution of
problem P which corresponds to the value of FI .
In Figs. 2–5 the amplitudes of the reflected, FR , and transmitted, FT , fields calculated with respect to the
amplitude of the incident field FI are shown.
These simulation results describe the essential relationships between linear and nonlinear problems. Namely, the
nonlinear reflected field can be predicted from that obtained from the linear problem using the perturbation
theory method (for small value of nonlinearity coefficient α). Uniqueness of the solution to the nonlinear problem
is preserved, see Figs. 2 and 3. Note that the curves in Figs. 4 and 5 significantly different from linear curves.
Uniqueness of the solution to the nonlinear problem is not preserved for the “big” value of nonlinearity coefficient
α.
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CONCLUSION

We have developed an analytical-numerical approach for the analysis of electromagnetic wave diffraction by a
waveguide of circular geometry filled with nonlinear metamaterial medium. The method can be extended to
more complicated nonlinearities and applied to numerical solution of the problems of diffraction by multilayered
metal-dielectric structures with nonlinear media.
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