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INTRODUCTION

Analysis of wave propagation in a regular waveguides with inhomogeneous filling and arbitrary inclusions
(perfectly conducting) constitutes an important class of electromagnetic problems. However, many problems here
remain unsolved, in particular, existence of normal waves and their basic properties including the discreteness
and localization spectrum of normal waves on the complex plane and the completeness of system of eigenvectors
and associated vectors.
The theory of electromagnetic wave propagation in regular waveguides with homogeneous filling were elaborated
in classical works of Tikhonov and Samarskii 12. For non-homogeneous waveguides with given cross-sectional
geometry, in particular, rectangular and circular, the results concerning existence and distribution of the normal
wave spectrum on the complex plane were obtained by reducing the original problem to explicit dispersion
relations and analysis of the corresponding complex-valued functions of one or several complex variables.
An approach based on the reduction to eigenvalue problems for operator pencils considered in Sobolev spaces was
proposed by Smirnov in 34. General theory of polynomial operator-functions called operator pencils is sufficiently
well elaborated. A fundamental work by Keldysh 5 pioneered investigation of non-self-adjoint polynomial pencils.
For inhomogeneous waveguide structures of arbitrary cross section, an approach 6 based on reducing the problem
to the study of an operator-function is proposed. Theorems are proved concerning the discrete character of the
spectrum of the problem and the distribution of characteristic numbers of the operator function over the complex
plane. Additionally, we prove that the system of eigen- and associated vectors of the operator function is doubly
complete in the sense of Keldysh with a finite defect.

1A.A. Samarskii, A.N. Tikhonov, “On excitation of radio waveguides II,” Zhurnal Tekhnicheskoj Fiziki, 17, 1947, pp. 1431–1440.
2A.A. Samarskii, A.N. Tikhonov, “The representation of the field in waveguide in the form of the sum of TE and TM modes,”

ZhurnalTekhnicheskoj Fiziki, 18, 1948, pp. 971–985.
3Yu.G. Smirnov, “Application of the operator pencil method in the eigenvalue problem for partially,” Doklady AN SSSR 312, 1990,

pp. 597–599.
4Yu.G. Smirnov, “The method of operator pencils in the boundary transmission problems for elliptic system of equations,”

Differential Equations, 27, 1991, pp. 140–147.
5M.V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators,” Doklady AN

SSSR, 77, 1951, pp. 11–4.
6Yu.G. Smirnov, Eu. Smolkin, “Discreteness of the spectrum in the problem on normal waves in an open inhomogeneous waveguide,”

Differential Equations, 53, 2017, pp. 1262–1273.
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STATEMENT OF THE PROBLEM

Consider the three-dimensional space R3 with the cartesian coordinate system Oxyz. Let Ω ∈ R2 = {z = 0} is
a bounded domain on the plane Oxy with boundaries Γ1 and Γ2 (see Fig. 1). We will consider the problem of
normal waves in cylindrical shielded waveguide which transversal (with respect to Oz ) crosssection is formed
by the domain Ω. We assume that waveguide’s filling contains isotropic inhomogeneous media with the
relative dielectric permittivity ε(x, y) and magnetic permeability µ(x, y). The boundaries Γ1 and Γ2 are the
projection of the surface of the infinitely thin and perfectly conducting screens.

Рис. .1: Geometry of the problem
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STATEMENT OF THE PROBLEM

The permittivity and permeability inside a waveguide have a form ε0ε(x), x ∈ Ω, and
µ0µ(x), x ∈ Ω,respectivelly, where x = (x, y), ε(x) ∈ C1(Ω) and µ(x) ∈ C1(Ω). Here ε0 and µ0 are
permittivity and permeability of vacuum.
We will consider monochromatic waves

Ee−iωt = e−iωt (Ex,Ey,Ez)
T , He−iωt = e−iωt (Hx,Hy,Hz)

T ,

where ( · )T denotes the transpose operation. Each component of the field E, H is a function of three spatial
variables.
The complex amplitudes E, H of the electromagnetic field satisfy Maxwell’s equations{

rotH = −iεE,
rotE = iµH.

(1)

boundary conditions for tangential electric components on perfectly conducting surfaces:

Eτ |Γ1
= 0, Eτ |Γ2

= 0, (2)

and the finite energy condition: ∫
Ω

(
ε|E|2 + µ|H|2

)
dx <∞, (3)

where τ denotes the tangential unit vector.
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STATEMENT OF THE PROBLEM

The Maxwell system (1) is written in the normalized form. The passage to dimensionless variables has been
carried out 7; namely, k0x→ x, γ → γ

k0
,
√

µ0
ε0

H→ H, E→ E, where k2
0 = ω2ε0µ0 (the time factor e−iωt

is omitted everywhere.)
The normal waves propagating along the axis Oz of the waveguide W have the form 8

Ex = Ex(x)eiγz, Ey = Ey(x)eiγz, Ez = Ez(x)eiγz,

Hx = Hx(x)eiγz, Hy = Hy(x)eiγz, Hz = Hz(x)eiγz,
(4)

where γ is the normalized propagation constant of waveguide (unknown spectral parameter of the problem).
The problem (1)–(3) is an eigenvalue problem for the Maxwell equations with spectral parameter γ. In what
follows we often omit the arguments of functions when it does not lead to misunderstanding.

7Yu.G. Smirnov, “Mathematical Methods for Electromagnetic Problems,” Penza: PSU Press, 2009.
8A.W. Snyder, J. Love, “Optical waveguide theory,” Springer, 1983. 1907.
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DIFFERENTIAL EQUATION

Substituting E and H with components (4) into equations (1), expressing the functions Ex, Ey, Hx and Hy
through Ez and Hz, we find

Ex =
i

κ2

(
γ
∂Ez
∂x

+ µ
∂Hz
∂y

)
, Hx =

i

κ2

(
γ
∂Hz
∂x
− ε∂Ez

∂y

)
,

Ey =
i

κ2

(
γ
∂Ez
∂y
− µ∂Hz

∂x

)
, Hy =

i

κ2

(
γ
∂Hz
∂y

+ ε
∂Ez
∂x

)
,

where
κ2 = εµ− γ2 6= 0.

It follows from last formulas that the field of the normal wave can be represented via two scalar functions

Π := Ez(x), Φ := Hz(x).
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DIFFERENTIAL EQUATION

For functions Π and Φ from (1)–(3) we have the following eigenvalue problem P: to find γ ∈ C, called eigenvalues
such that there are nontrivial solutions of the system

∆Π + κ2Π =
γ2

εκ2
∇ε∇Π +

γ

εκ2
J (εµ,Φ) +

γε

κ2
∇µ∇Π,

∆Φ + κ2Φ =
γ2

µκ2
∇µ∇Φ +

γ

µκ2
J (εµ,Π) +

γµ

κ2
∇ε∇Φ,

and
J (u, v) :=

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
,

satisfying the boundary conditions on Γ1 and Γ2

Π|Γ1
= 0,

∂Φ

∂n

∣∣∣∣
Γ1

= 0, Π|Γ2
= 0,

∂Φ

∂n

∣∣∣∣
Γ2

= 0,

and the energy condition ∫
Ω

(
|∇Π|2 + |∇Φ|2 + |Π|2 + |Φ|2

)
dx <∞,

where n denotes the (exterior w.r.t. Ω) normal unit vector such that x× y = τ × n.
The equivalence of reduction to the problem P is not valid only for γ2 = εµ; in this case it is necessary to
study the system (1) directly.
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Variational formulation

We will find the solutions Π and Φ of the problem P in Sobolev spaces: H1
0 (Ω) and H1 (Ω) , respectively, with

the inner product and the norm

(f, g)1 =

∫
Ω

(
∇f∇g + fg

)
dx, ‖f‖21 = (f, f)1 .

Let us give the variational formulation of the problem P . Multiplying the equations of system by arbitrary test
functions u ∈ H1

0 (Ω) , v ∈ H1 (Ω) (we can assume that these functions are continuously differentiable in Ω),
and applying Green’s formula [?], taking into account the boundary conditions and the right-hand sides of the
equations of the system under consideration, we obtain we obtain the variational relation

γ2

∫
Ω

(Πu+ Φv) dx +

∫
Ω

(∇Π∇u+∇Φ∇v) dx−

−
∫
Ω

εµ (Πu+ Φv) dx +

∫
Ω

γ2

κ2

(
∇ε∇Π

ε
u+
∇µ∇Φ

µ
v

)
dx+

+

∫
Ω

γ

κ2

(
J (εµ,Φ)

ε
u+

J (εµ,Π)

µ
v

)
dx+

+

∫
Ω

γ

κ2
(εu∇µ∇Π + µv∇ε∇Φ) dx = 0, (5)

for all u ∈ H1
0 (Ω) , v ∈ H1 (Ω) .
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Variational formulation

Let H = H1
0 (Ω)×H1 (Ω) be the Cartesian product of the Hilbert spaces with the inner product and the norm

(u,v) = (u1, v1)1 + (u2, v2)1, ‖u‖2 = ‖u1‖21 + ‖u2‖21,

where u = (u1, u2)T , v = (v1, v2)T .
The integrals in (5) can be considered as the sesquilinear forms on C , defined in H with respect to vector-
functions

u = (Π, Φ)T , v = (u, v)T .

These forms (if they are bounded) define, in accordance with the results of 9, linear bounded operators T :
H → H

t(u, v) = (Tu, v), ∀v ∈ H, (6)

9T. Kato, “Perturbation Theory for Linear Operators,” New York: Springer-Verlag, 1980.
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Variational formulation

Let us consider the following quadratic forms and corresponding operators

k(u, v) :=

∫
Ω

(Πu+ Φv) dx = (Ku,v),

k1(u, v) :=

∫
Ω

(εµ+ 1) (Πu+ Φv) dx = (K1u,v),

a(u, v) :=

∫
Ω

(
∇Π∇u+∇Φ∇v + εΠu+ Φv

)
dx = (Iu,v),

b1(u, v) :=

∫
Ω

γ2

κ2

(
∇ε∇Π

ε
u+
∇µ∇Φ

µ
v

)
dx = (B1(γ)u,v),

b2(u, v) :=

∫
Ω

γ

κ2

(
J (εµ,Φ)

ε
u+

J (εµ,Π)

µ
v

)
dx = (B2(γ)u,v),

b3(u, v) :=

∫
Ω

γ

κ2
(εu∇µ∇Π + µv∇ε∇Φ) dx = (B3(γ)u,v),

for all v ∈ H.
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Variational formulation

The variational problem (5) can be written in the operator form

N(γ)u :=
(
γ2K + I−K1 + B1(γ) + B2(γ) + B3(γ)

)
u = 0.

The characteristic numbers and eigenvectors of the operator-function N(γ) by definition coincide with the
eigenvalues and eigenvectors of the problem P for γ2 6= µε.
Thus the problem of normal waves is reduced to the eigenvalue problem for the operator-function N(γ). In this
way we consider properties of the operators in (11).

Lemma 1
The operator K is compact. The following estimate holds for its eigenvalues

λn (K) = O(n−1), n→∞.

Lemma 2
The operator-function B1(γ), B2(γ) and B3(γ) are compact (bounded) and holomorphic in the domain

C\Λ0, where Λ0 := {γ : γ2 = µ(x)ε(x), x ∈ Ω}.

Definition 3
We will denote by ρ(N) the resolvent set of N(γ) (consisting of all values of γ ∈ C where there exists the
bounded inverse operator N−1(γ)) and by σ(N) = C \ ρ(N) the spectrum of N(γ).
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Variational formulation

Properties of the spectrum of the operator-function N(γ) are given in the following theorems.

Theorem 4
There exists γ̃ ∈ R such that the operator N(γ̃) is continuously invertible, i.e. resolvent set
ρ(N) := {γ : ∃ N−1(γ) : H → H} of operator-function N(γ̃) is not empty.

Theorem 5
Operator N(γ) : H → H is bounded, holomorphic, and Fredholm in the domain Λ = C\Λ0.

Theorem 6
The spectrum of operator-function N(γ) : H → H is discrete in Λ i.e. has a finite number of eigenvalues of
finite algebraic multiplicity in any compact set K0 ⊂ Λ.
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Variational formulation

Lemma 7
The spectrum of the operator-function N(γ) is symmetric with respect to the origin σ(N) = −σ(N). If γ0 is
eigenvalue of operator-function N(γ) corresponding to eigenvector u = (Π,Φ)T then value −γ0 is also
eigenvalue of operator-function N(γ) corresponding to eigenvector u = (−Π,Φ)T with the same multiplicity.

Let us consider operator-function N(γ) in domain Λη := {γ : |γ| > η}, where η is arbitrary positive value such
that η >

√
max
x∈Ω
|µ(x)ε(x)|.

Theorem 8
System of eigenvectors and associated vectors of the operator-function N(γ) corresponding to eigenvalues
located in domain Λη is double complete with a finite defect in H ×H:

dim coker Ñ
(
φ

(k,0)
p

)
<∞ and dim coker Ñ

(
φ

(k,1)
p

)
<∞;

where Ñ
(
φ

(k,ν)
p

)
denotes the closure of linear combinations of vectors

{
φ

(k,ν)
p

}
.
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CONCLUSION

We have reduced the boundary eigenvalue problem for the Maxwell equations describing normal waves in a
broad class of non-homogeneously filled waveguides to an eigenvalue problem for an operator-function. We have
proved fundamental properties of the spectrum of normal waves including the discreteness and a statement
describing localization of eigenvalues of the operator-function on the complex plane.
We have formulated the definition of eigenwaves and associated waves of a waveguide in terms of eigenvectors
and associated vectors of an operator-function. We have established double completeness of the system of
eigenvectors and associated vectors of the operator-function with a finite defect. We have proved the existence
of an infinite (countable) set of eigenvalues located in domain Λη := {γ : |γ| > η}.

14 / 15



A.A. Samarskii, A.N. Tikhonov, “On excitation of radio waveguides II,” Zhurnal Tekhnicheskoj Fiziki, 17,
1947, pp. 1431–1440.

A.A. Samarskii, A.N. Tikhonov, “The representation of the field in waveguide in the form of the sum of
TE and TM modes,” ZhurnalTekhnicheskoj Fiziki, 18, 1948, pp. 971–985.

Yu.G. Smirnov, “Application of the operator pencil method in the eigenvalue problem for partially,” Doklady
AN SSSR 312, 1990, pp. 597–599.

Yu.G. Smirnov, E. Smolkin, M.O. Snegur, “Analysis of the Spectrum of Azimuthally Symmetric Waves
of an Open Inhomogeneous Anisotropic Waveguide with Longitudinal Magnetization,” Computational
Mathematics and Mathematical Physics, 58(11), 2018, pp. 1887–1901.

Yu.G. Smirnov, “The method of operator pencils in the boundary transmission problems for elliptic system
of equations,” Differential Equations, 27, 1991, pp. 140–147.

M.V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear
operators,” Doklady AN SSSR, 77, 1951, pp. 11–4.

T. Kato, “Perturbation Theory for Linear Operators,” New York: Springer-Verlag, 1980.

R. Adams, “Sobolev spaces,” New York: Academic Press, 1975.

I.C. Gohberg, M.G. Krein, “Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space,”
M.: Nauka, 1965.

Yu.G. Smirnov, Eu. Smolkin, “Discreteness of the spectrum in the problem on normal waves in an open
inhomogeneous waveguide,” Differential Equations, 53, 2017, pp. 1262–1273.

15 / 15


