Vital Signs Monitoring for Different Chest Orientations Using an FMCW Radar

Giulia Sacco<sup>1</sup>, Emanuele Piuzzi<sup>1</sup>, Erika Pittella<sup>2</sup>, Stefano Pisa<sup>1</sup>

 Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184, Rome, Italy
Department of Legal and Economic Sciences, Pegaso University, 00186, Rome, Italy

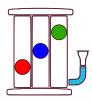




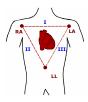
#### 1 Introduction

2 Radar System at 5.8 GHz

3 Measurements




### Introduction: Conventional Techniques Vital Signs Estimation


#### Spirometer

#### **Pulse Oximeter**

#### Electrocardiogram







 ✓ Actual Gold Standard for breath monitoring.
× Does not allow a continuative monitoring.
× Interferes with respiration.  ✓ Indicates respiratory disturbance has occurred.
× Does not provide respiratory rate. ✓ Actual gold standard for heart monitoring.

 $\checkmark$  Allows a continuative monitoring.

× Requires a direct contact with the body.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Introduction: Conventional Techniques Position Estimation

GPS



Video-surveillance



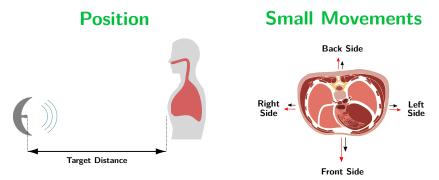
 $\checkmark$  Worldwide diffused and can reach elevate accuracy.

× The signal in indoor environment gets highly attenuated and scattered by the roof and walls of the building.  $\checkmark$  Can be easily used in closed environments.

 $\times$  Does not respect the privacy of the patient.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

#### Introduction: Radar technique


Radar systems can perform **non-contact sensing** of cardiorespiratory activity and position. These results are useful for:



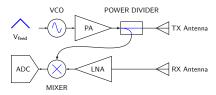
- monitoring patients with compromised skin (burns or chemical contaminations),
- home therapy,
- sleep monitoring,
- detection of humans behind walls or under rubble,
  - monitoring people in case of risk of infection or during **pandemics** (e.g. COVID-19 crisis).

### Problem Geometry

The radar system must be able to get information about the subject **position** and the thorax **small movements** due to the respiration and the heartbeat.

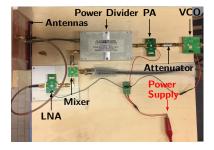


but the presence of environmental <u>clutter</u> and the <u>smaller movements</u> of the chest wall on the <u>lateral</u> and <u>back</u> sides could worsen the detection.




#### 2 Radar System at 5.8 GHz

#### **3** Measurements




## System Overview

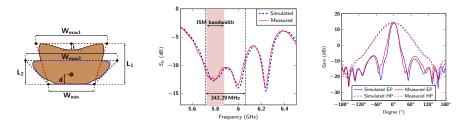


#### **Radar Components**







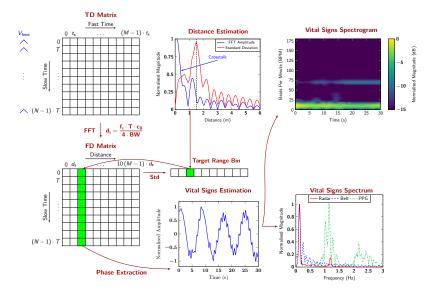

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

#### Antenna Design

For radar applications antenna requirements are:

- Iow-cost
- compact

This kind of antenna is typically narrow band, while the fractional bandwidth inside the 5.8 GHz ISM band is of about 2.6%.




A new dual band, high gain patch antenna with side lobe control has been  $proposed^{1}$ .

<sup>1</sup>G. Sacco, P. D'Atanasio, and S. Pisa, "A wideband and low-sidelobe series-fed patch array at 5.8 ghz for radar applications," *IEEE Antennas and Wireless Propagation Letters*, vol. 19, no. 1, pp:9-13, 2019.



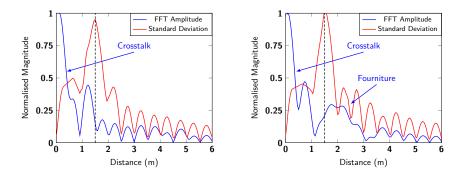
# Signal Processing



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Introduction

2 Radar System at 5.8 GHz




#### **4** Conclusion

### Position Estimation

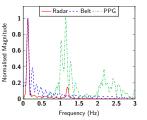
# Patient with the chest facing the antenna

# Patient with the side facing the antenna



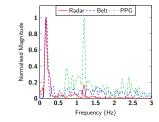

The combined use of the **standard deviation** and the **high gain** antennas help isolate the target from the surrounding clutter.

# Vital Signs Estimation

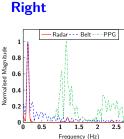

#### Front





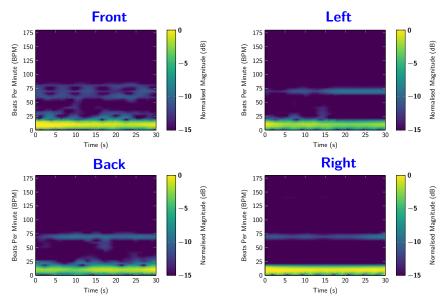




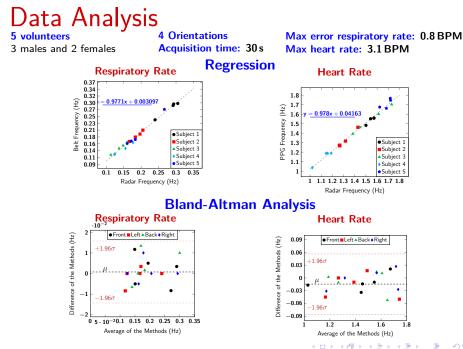




Back





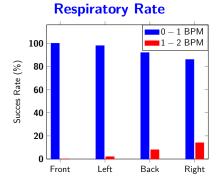



(日)

## Vital Signs Estimation




▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト → 臣 → のへ



э

### Data Analysis

The success rate of the measurements is defined as the time the respiration and heart rate measured by the target stay lower than a specified value of bpm.





|             | Front |      |      |      |
|-------------|-------|------|------|------|
| 0 BPM-1 BPM | 100%  | 98 % | 92 % | 86 % |
| 1 BPM–2 BPM | 0%    | 2%   | 8%   | 14 % |

|             | Front |      |      |      |
|-------------|-------|------|------|------|
| 0 BPM-2 BPM | 98 %  | 84 % | 74 % | 64 % |
| 2 BPM-4 BPM | 2%    | 16%  | 26 % | 36 % |

・ロト ・母 ト ・ ヨト ・ ヨー ・ つんの

Introduction

2 Radar System at 5.8 GHz

3 Measurements



### Conclusions

- A complete radar system working in the 5.8 GHz ISM band has been designed.
- An algorithm based on the only frequency-modulated continous wave (FMCW) radar architecture has been proposed to estimate the position and the vital signs in a closed environment.
- A new patch geometry has been proposed to overcome the bandwidth limitations of the conventional patch arrays.
- The maximum error in terms of bpm was 0.8 BPM and 3.1 BPM for the respiratory and heart rate.
- Independently of the orientation, the respiration rate error stayed under 2 BPM in 100 % of the measurement time and 100 %, 98 %, 92 %, and 86 % under 1 BPM when the chest, the left side, the back, and the right were towards the antenna, respectively. For the hearth rate, all the measurement errors were under 4 BPM and under 2 BPM for 98 %, 84 %, 74 %, and 64 % for the front, left, back, and right orientations, respectively.