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Introduction

❑ Brain stroke is well known as one of the leading causes of death and 
disability worldwide.

❑ Within electromagnetic diagnostic techniques [1, 2] an increasing 
interest is attracted by brain stroke detection [3 – 6].

❑ A novel tomographic multistatic system where the acquired data are 
processed by an inexact Newton scheme in variable-exponent 
𝑳𝒑 spaces is presented.

❑ Simulated and experimental results are shown.
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Inverse problem configuration & assumptions

❑ A simplified 2D scalar model with 

dielectric properties independent from the 

axial coordinate 𝑧 has been assumed [1] 

❑ The head, located in a known 

investigation domain 𝐷, is illuminated 

by a known time-harmonic TM𝑧

incident electromagnetic field 𝑒𝑖𝑛𝑐

❑ Head is surrounded by a lossy coupling 

medium with complex dielectric 

permittivity 𝜖𝑏

❑ Estimation of the reference dielectric 

profile of the head characterized by a 

contrast function ǁ𝑐 = ( ǁ𝜖 − 𝜖𝑏)/𝜖𝑏
( ǁ𝜖 being the complex dielectric 

permittivity of the reference profile)
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❑ The scattering problem is formulated as

Δ𝑒 𝐫 = −𝑘𝑏
2 𝐷𝑖𝑛𝑣׬

𝑥 𝐫′ 𝑒𝑡𝑜𝑡 𝐫
′ 𝑔 𝐫, 𝐫′ 𝑑𝐫′

𝐺𝑑𝑎𝑡𝑎𝑥𝑒𝑡ot

, 𝐫 ∈ ℳ

𝑒𝑡𝑜𝑡 𝐫 = 𝑒𝑟𝑒𝑓 𝐫 −𝑘𝑏
2 𝐷𝑖𝑛𝑣׬

𝑥 𝐫′ 𝑒𝑡𝑜𝑡 𝐫
′ 𝑔 𝐫, 𝐫′ 𝑑𝐫′

𝐺𝑠𝑡𝑎𝑡𝑒𝑥𝑒𝑡o𝑡

, 𝐫 ∈ 𝒟

where 

▪ 𝑐 = 𝜖 − 𝜖𝑏 /𝜖𝑏 is the contrast function of the actual configuration 
(which gives rise to the field 𝑒𝑡𝑜𝑡)

▪ 𝑐𝑟𝑒𝑓 = 𝜖𝑟𝑒𝑓 − 𝜖𝑏 /𝜖𝑏 represent the contrast function of the reference 

configuration (related to the field 𝑒𝑟𝑒𝑓)

❑ By combining the two equations, we obtain the scattering model

Δ𝑒 𝐫 = 𝐹 𝑥 𝐫 = 𝐺𝑑𝑎𝑡𝑎𝑥 𝐼 − 𝐺𝑠𝑡𝑎𝑡𝑒𝑥
−1
𝑒𝑟𝑒𝑓 𝐫

Inverse scattering problem formulation
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❑ To solve this nonlinear equation, an inexact-Newton iterative 

method is applied to minimize the residual functional Ψ:𝑋 → ℝ

Ψ 𝑥 =
1

2
𝐹 𝑥 − Δ𝑒 𝑌

2 ,

where 𝑥 ∈ 𝑋, Δ𝑒 ∈ 𝑌, 𝐹: 𝑋 → 𝑌, and ∙ 𝑌
2 denotes the square of the 

norm of the functional space 𝑌

❑ In particular, variable exponent Lebesgue spaces 𝐿𝑝(∙) [3] are 
considered, in which the power 𝑝 used in the norm is not constant, 
but it is a function 𝑝 ∙ .

Inversion procedure
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Inversion procedure
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❑ The exponent function for the space of the unknowns 𝑋 depends upon 

the position inside the investigation domain, allowing to set different 

values of the parameter 𝑝 to each point.

❑ The function 𝑝 𝐫 is updated at each step as

𝑝𝑘 ⋅ = 𝑝𝑚𝑖𝑛 + 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 ൗ𝑥𝑘 max
𝒟

𝑥𝑘

❑ Two possible initializations are considered:

o A fixed value is used, i.e., 𝑝0 𝐫 = 𝑝𝑠𝑡𝑎𝑟𝑡

o A delay-and-sum qualitative scheme is used to build the initial map, i.e.,

𝐼 𝐫 = න

𝑀

න

Ω

𝐸𝑠 𝐫′, 𝜔 𝑒𝑗
2𝜔
𝑣 𝐫−𝐫′ 𝑑𝜔𝑑𝐫′ → 𝑝0 𝐫 = 𝑝𝑚𝑖𝑛 + 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

𝐼 𝐫

max
𝐫 ∈ 𝐷

𝐼 𝐫



Inversion procedure
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Initialization

𝑘 = 0, 𝑥0 = 0

The problem is linearized around the currently 

estimated solution 𝑥𝑘
Δ𝑒 − 𝐹 𝑥𝑘 − 𝐹𝑥𝑘𝛿𝑘 = 0

Update of the unknown with the regularized linear 

problem solution 

𝑥𝑘+1 = 𝑥𝑘 +෢𝛿𝑘

End

Variable-exponent Landweber method initialization

𝛿 = 0, ሚ𝛿𝑘,0 = 0

Iterative update of the linearized problem solution

ሚ𝛿𝑘,𝑖+1 = 𝐽𝑋
𝑝𝑘 ⋅

𝛿𝑘,𝑖 + 𝜏𝐹𝑥𝑘
∗ 𝐽𝑌

𝑝𝑚,𝑘 Δ𝑒 − 𝐹 𝑥𝑘 − 𝐹𝑥𝑘𝛿𝑘,𝑖

𝛿𝑘,𝑖+1 = 𝐽
𝑋∗
𝑝𝑘
∗ ⋅ ሚ𝛿𝑘,𝑖+1

where 

• 𝐹𝑥𝑘
∗ is the adjoint of the linear operator 𝐹𝑥𝑘

• 𝐽𝑋
𝑝𝑘 ⋅

, 𝐽
𝑋∗
𝑝𝑘
∗ ⋅

, 𝐽𝑌
𝑝𝑚,𝑘 are duality maps of spaces 𝑋, 𝑋∗ and 𝑌

• 𝜏 = 1/ 𝐹𝑥𝑘
2

is the step size

• 𝑝𝑘
∗(⋅) is the point-wise Hölder conjugate of 𝑝𝑘(⋅)

Convergence
Yes

No

No

Yes

Convergence

Update of the adaptive map of 𝑝(⋅) inside the 

investigation domain 𝒟
𝑝𝑘+1 ⋅ = 𝑝𝑚𝑖𝑛 + 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 ൗ𝑥𝑘+1 max

𝒟
𝑥𝑘+1



Brain stroke detection – Numerical results
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Simulation parameters

❑ Head of the AustinWoman 3D model [1] 
with 2-mm voxel size

❑ Time-domain forward simulation by using 
gprMax FDTD [2]

❑ Dispersive tissue properties [3, 4]

❑ Domain size: 28.4 × 32 × 30 cm (3.4 × 106

cells of 2 mm side)

❑ PML boundary (10 cells)

❑ Time step: 3.85 × 10−12 s

❑ Time window: 3 × 10−8 s

❑ 𝑆 = 21 antennas (Hertzian dipoles) on an 
ellipse of semi-axes 9.2 cm and 11 cm.

❑ Excitation signal: Gaussian derivative 
centered at 1 GHz

❑ Background coupling medium: 
glycerin/water mixture 70%

❑ Scattered field data corrupted by additive 
white Gaussian noise with 𝑆𝑁𝑅 = 25 dB.

Three-dimensional FDTD simulation domain

© 2020 IEEE. Reprinted, 

with permission, from [5].
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Reconstructed dielectric properties at 0.5 GHz

Variable-exponent approach Fixed-exponent approach 
(𝒑𝒐𝒑𝒕 = 𝟏. 𝟐)

Reconstructed dielectric properties at 0.8 GHz

Variable-exponent approach Fixed-exponent approach 
(𝒑𝒐𝒑𝒕 = 𝟏. 𝟒)

Brain stroke detection – Numerical results

Measurement configuration

❑ Ellipsoidal inclusion: 
hemorrhagic brain stroke at (11.7, 
17.2, 17.5) cm

❑ Healthy head profile
used as reference model

❑ Investigation domain composed 
by 1485 cells with 4 mm side

❑ Frequency hopping started from 
500 Mhz and with step 50 MHz.

❑ Range of values of the exponent 
function: [1.4,2].

❑ Initial exponent map: constant 
value equal to 1.4.

© 2020 IEEE. Reprinted, 

with permission, from [5].

[1] I. Bisio et al., “Variable-exponent Lebesgue-space inversion for brain 
stroke microwave imaging,” IEEE Transactions on Microwave Theory 
and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020.
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Reconstructed dielectric properties
(variable exponent approach)

0.5 GHz

Measurement configuration

❑ Ellipsoidal inclusion: 
hemorrhagic brain stroke at (11.7, 
17.2, 17.5) cm

❑ Partially homogeneous 
configuration (except skull) 
used as reference model

❑ Investigation domain composed 
by 1485 cells with 4 mm side

❑ Frequency hopping started from 
500 Mhz and with step 50 MHz.

❑ Range of values of the exponent 
function: [1.4,2].

❑ Initial exponent map: constant 
value equal to 1.4.

0.6 GHz

0.7 GHz 0.8 GHz

Brain stroke detection – Numerical results

[1] I. Bisio et al., “Variable-exponent Lebesgue-space inversion for brain 
stroke microwave imaging,” IEEE Transactions on Microwave Theory 
and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020.

© 2020 IEEE. Reprinted, with permission, from [1].
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Reconstructed dielectric properties at 0.7 GHz

DAS reconstruction
(initial map)

Variable-exponent
approach

Brain stroke detection – Numerical results

Measurement configuration

❑ Ellipsoidal inclusion: hemorrhagic brain stroke at (11.7, 17.2, 17.5) cm

❑ Healthy head profile used as reference model

❑ Investigation domain composed by 1485 cells with 4 mm side

❑ Frequency hopping started from 500 MHz and with step 50 MHz.

❑ Range of values of the exponent function: [1.4,2].

❑ Initial exponent map: obtained by applying the DAS scheme.
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Brain stroke detection – Experimental results
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Cylindrical test target

16 antennas

Bowtie-like antenna 
structure [1]

Personal 

Computer
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USB
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Analyzer 

Keysight 8753E RF switch matrix

Port 2 In 2 In 1
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…

…

Coaxial cables

Configuration of the 
system prototype

[1] I. Bisio et al., “Brain stroke microwave imaging by means of a Newton-
conjugate-gradient method in Lp Banach spaces,” IEEE Transactions on 
Microwave Theory and Techniques, vol. 66, no. 8, pp. 3668–3682, Aug. 2018.
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Preliminary experimental results
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❑ Target properties

o Outer structure (filled with 70% glycerin/water mixture)

• 5 L PP beaker (external diameter of 180 mm, 4 mm thickness)

filled with 70% glycerin/water mixture

o Cylindrical inclusions (filled with 0.9% saline solution)

• 100 mL PP circular cylinder, 20 mm diameter

• 500 mL PP circular cylinder, 52 mm diameter

❑ Configuration parameters

o Coupling medium (70% glycerin/water mixture) in PE 

bags (40 x 80 mm, 100 𝜇m thick, 20 ml volume) around 

the outer cylinder

o Investigation domain partitioned into 

𝑁𝑖 = 1264 square cells of side 𝑑𝑖 = 4.5 mm

❑ Parameters of the inverse solver

o 𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑝𝑚𝑖𝑛 = 1.4, 𝑝𝑚𝑎𝑥 = 2.0

o Number of maximum allowed inner and outer iterations 
to 𝑁𝐼𝑁 = 𝑁𝐿𝑊 = 100, minimum residual variation 𝑟𝐼𝑁
= 𝑟𝐿𝑊 = 0.35

Plastic cylinders
5 L500 mL

100 mL

[1] I. Bisio, C. Estatico, A. Fedeli, F. Lavagetto, M. Pastorino, A. Randazzo, and A. Sciarrone, “Variable-exponent Lebesgue-space inversion for brain 
stroke microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020.

Dielectric properties of liquids [1]

© 2020 IEEE. Reprinted, with permission, from [1].



Preliminary experimental results
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Reconstructed relative dielectric properties (variable exponent)

Target configuration – Two circular inclusions 
(∅ 20 mm and ∅ 52 mm cylindrical inclusions)

Target configuration – Single circular inclusion
(∅ 52 mm cylindrical inclusion)

Glycerin/water

Saline

Saline

Glycerin/water

Reconstructed relative dielectric properties (variable exponent)

𝒇 = 𝟔𝟎𝟎MHz 𝒇 = 𝟗𝟎𝟎MHz

𝒇 = 𝟔𝟎𝟎MHz 𝒇 = 𝟗𝟎𝟎MHz
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Conclusions

❑ A novel tomographic multistatic microwave imaging system for 
brain stroke detection has been designed

❑ A variable-exponent Lebesgue-space inversion scheme is adopted 
for processing the acquired data. 

❑ Two initialization strategies have been considered:

o Constant exponent function

o Variable exponent function obtained by a delay-and-sum scheme.

❑ Numerical simulations and preliminary experimental results have 
been carried out

❑ Further activities will be devoted to

o Improve the measurement system

o Test the method in more realistic configurations, also with clinical data
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