

URSI GASS 2020 Rome, Italy 29 August - 5 September 2020

A Microwave Diagnostic Technique for Early-Stage Brain Stroke Characterization

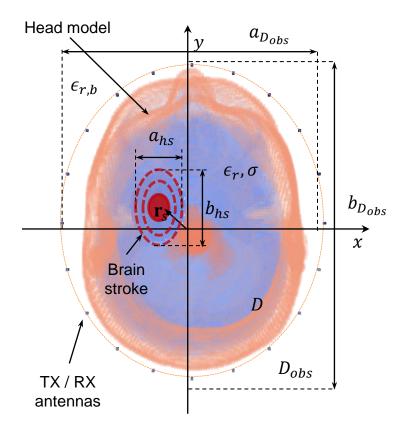
A. Fedeli, A. Randazzo, A. Sciarrone, I. Bisio, F. Lavagetto, and M. Pastorino

Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture (DITEN) – University of Genoa, Italy

Introduction

- □ **Brain stroke** is well known as one of the leading causes of death and disability worldwide.
- □ Within **electromagnetic diagnostic techniques** [1, 2] an increasing interest is attracted by **brain stroke detection** [3 6].
- A novel tomographic multistatic system where the acquired data are processed by an inexact Newton scheme in variable-exponent *L^p* spaces is presented.

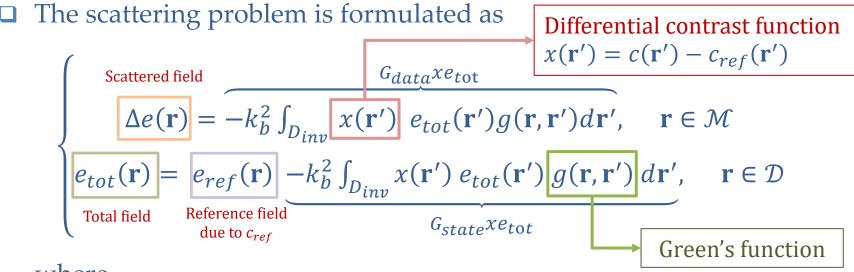
□ Simulated and experimental results are shown.


- [1] J.-C. Bolomey, "Advancing Microwave-Based Imaging Techniques for Medical Applications in the Wake of the 5G Revolution," **in 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019**, pp. 1–5.
- [2] O. M. Bucci, G. Bellizzi, S. Costanzo, L. Crocco, G. Di Massa, and R. Scapaticci, "Assessing detection limits in magnetic nanoparticle enhanced microwave imaging," IEEE Access, vol. 6, pp. 43192–43202, 2018.
- [3] A. E. Stancombe, K. S. Bialkowski, and A. M. Abbosh, "Portable microwave head imaging system using software-defined radio and switching network," IEEE J. Electromagn. RF Microw. Med. Biol., 3, 4, Dec. 2019, pp. 284–291.
- [4] V. L. Coli, P.-H. Tournier, V. Dolean, I. E. Kanfoud, C. Pichot, C. Migliaccio, and L. Blanc-Féraud, "Detection of simulated brain strokes using microwave tomography," IEEE J. Electromagn. RF Microw. Med. Biol., 3, 4, Dec. 2019, pp. 254–260.
- [5] R. Scapaticci, J. Tobon, G. Bellizzi, F. Vipiana, and L. Crocco, "Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring," IEEE Trans. Antennas Propag., 66, 12, Dec. 2018, pp. 7328–7338.
- [6] L. Crocco, I. Karanasiou, M. James, and R. C. Conceição, Eds., Emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy. Springer International Publishing, 2018.

Inverse problem configuration & assumptions

A simplified 2D scalar model with dielectric properties independent from the axial coordinate z has been assumed [1]

- The head, located in a known investigation domain *D*, is illuminated by a known time-harmonic TM*z* incident electromagnetic field *e*_{inc}
- Head is surrounded by a lossy coupling medium with complex dielectric permittivity *ε*_b
- □ Estimation of the reference dielectric profile of the head characterized by a contrast function $\tilde{c} = (\tilde{\epsilon} - \epsilon_b)/\epsilon_b$ ($\tilde{\epsilon}$ being the complex dielectric permittivity of the reference profile)


Configuration of the considered model and measurement system

[1] I. Bisio, C. Estatico, A. Fedeli, F. Lavagetto, M. Pastorino, A. Randazzo, and A. Sciarrone, "Variable-exponent Lebesguespace inversion for brain stroke microwave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020. <u>https://doi.org/10.1109/TMTT.2019.2963870</u>.

Inverse scattering problem formulation

where

- $c = (\epsilon \epsilon_b)/\epsilon_b$ is the contrast function of the actual configuration (which gives rise to the field e_{tot})
- $c_{ref} = (\epsilon_{ref} \epsilon_b)/\epsilon_b$ represent the contrast function of the reference configuration (related to the field e_{ref})
- □ By combining the two equations, we obtain the scattering model $\Delta e(\mathbf{r}) = F(x)(\mathbf{r}) = G_{data}x(I - G_{state}x)^{-1}e_{ref}(\mathbf{r})$

Inversion procedure

To solve this nonlinear equation, an inexact-Newton iterative method is applied to minimize the residual functional $\Psi: X \to \mathbb{R}$

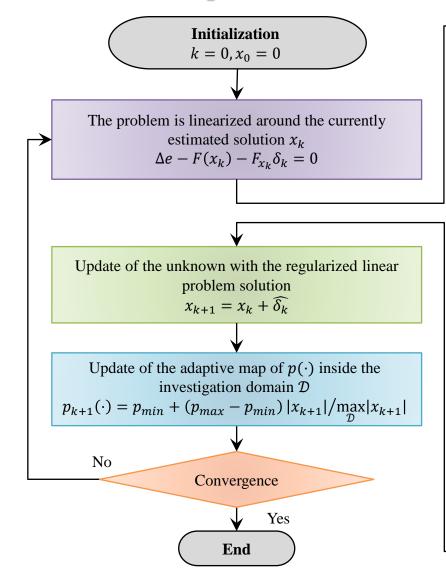
$$\Psi(x) = \frac{1}{2} \|F(x) - \Delta e\|_{Y}^{2},$$

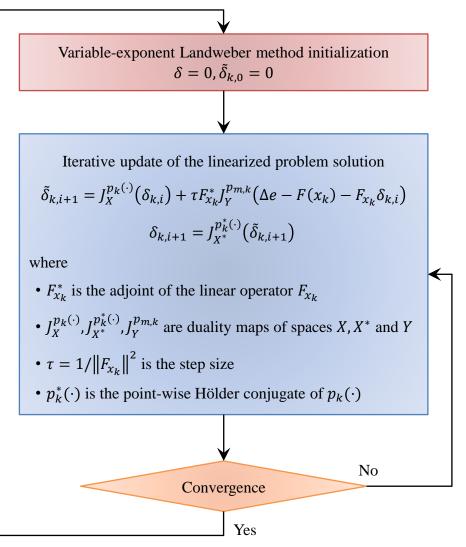
where $x \in X$, $\Delta e \in Y$, $F: X \to Y$, and $\|\cdot\|_{Y}^{2}$ denotes the square of the norm of the functional space *Y*

In particular, variable exponent Lebesgue spaces $L^{p(\cdot)}$ [3] are considered, in which the power *p* used in the norm is not constant, but it is a function $p(\cdot)$.

^[3] C. Estatico, A. Fedeli, M. Pastorino, and A. Randazzo, "Quantitative microwave imaging method in Lebesgue spaces with nonconstant exponents," IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 7282–7294, Dec. 2018.

Inversion procedure

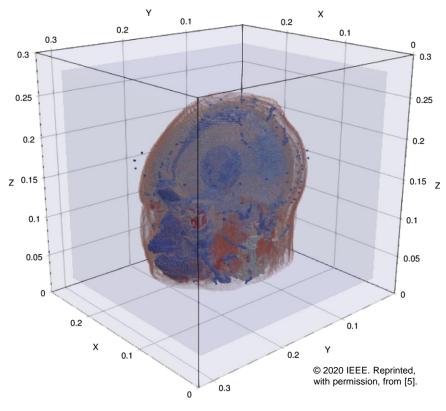

- The exponent function for the space of the unknowns *X* depends upon the position inside the investigation domain, allowing to set different values of the parameter *p* to each point.
- The function $p(\mathbf{r})$ is updated at each step as


$$p_k(\cdot) = p_{min} + (p_{max} - p_{min}) |x_k| / \max_{\mathcal{D}} |x_k|$$

- Two possible initializations are considered:
 - A fixed value is used, i.e., $p_0(\mathbf{r}) = p_{start}$
 - A delay-and-sum qualitative scheme is used to build the initial map, i.e., 0

$$I(\mathbf{r}) = \int_{M} \int_{\Omega} E_s(\mathbf{r}', \omega) e^{j\frac{2\omega}{v} \|\mathbf{r} - \mathbf{r}'\|} d\omega d\mathbf{r}' \to p_0(\mathbf{r}) = p_{min} + (p_{max} - p_{min}) \frac{|I(\mathbf{r})|}{\max_{\mathbf{r} \in D} |I(\mathbf{r})|}$$

Inversion procedure



Brain stroke detection – Numerical results

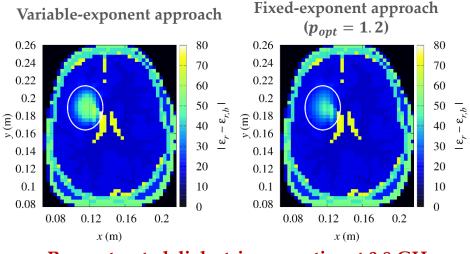
Simulation parameters

- Head of the AustinWoman 3D model [1] with 2-mm voxel size
- Time-domain forward simulation by using gprMax FDTD [2]
- Dispersive tissue properties [3, 4]
- Domain size: $28.4 \times 32 \times 30$ cm (3.4×10^6 cells of 2 mm side)
- □ PML boundary (10 cells)
- □ Time step: 3.85×10^{-12} s
- **D** Time window: 3×10^{-8} s
- □ S = 21 antennas (Hertzian dipoles) on an ellipse of semi-axes 9.2 cm and 11 cm.
- Excitation signal: Gaussian derivative centered at 1 GHz
- Background coupling medium: glycerin/water mixture 70%
- □ Scattered field data corrupted by additive white Gaussian noise with *SNR* = 25 dB.

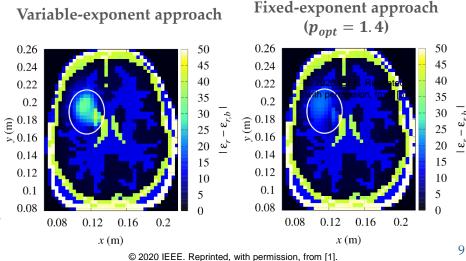
Three-dimensional FDTD simulation domain

- [1] J. W. Massey et al., 38th Ann. Int. Conf. of the IEEE EMBS, 2016.
- [2] C. Warren et al., Comput. Physics Comm., 209, 2016.
- [3] J. M. Fujii, IEEE MWCL, 22, (2), 2012.
- [4] S. Mustafa et al., IEEE TAP, 62 (3), 2014.
- [5] I. Bisio, C. Estatico, A. Fedeli, F. Lavagetto, M. Pastorino, A. Randazzo, and A. Sciarrone, "Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging," **IEEE TMTT**, 68(5), 2020.

Brain stroke detection – Numerical results


Measurement configuration

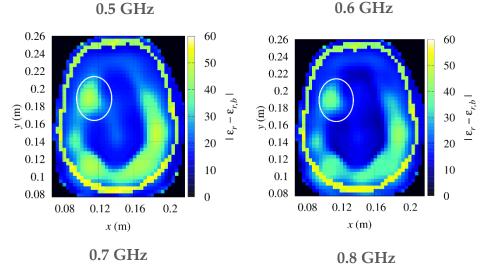
🐻 LDLT EN

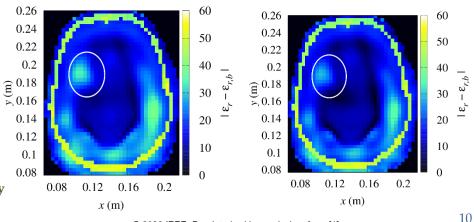

- Ellipsoidal inclusion: hemorrhagic brain stroke at (11.7, 17.2, 17.5) cm
- Healthy head profile used as reference model
- Investigation domain composed by 1485 cells with 4 mm side
- Frequency hopping started from 500 Mhz and with step 50 MHz.
- Range of values of the exponent function: [1.4,2].
- Initial exponent map: constant value equal to 1.4.

 I. Bisio et al., "Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020.

Reconstructed dielectric properties at 0.5 GHz

Reconstructed dielectric properties at 0.8 GHz

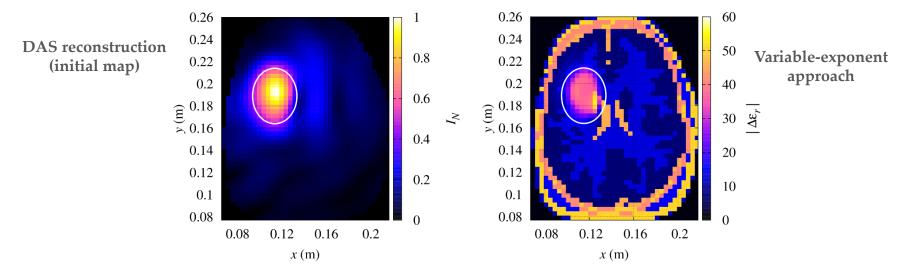



Brain stroke detection – Numerical results

Measurement configuration

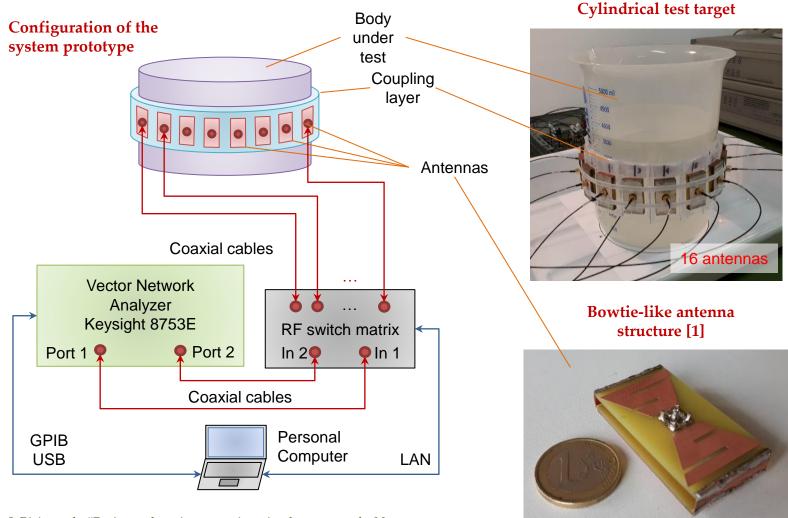
- Ellipsoidal inclusion: hemorrhagic brain stroke at (11.7, 17.2, 17.5) cm
- Partially homogeneous configuration (except skull) used as reference model
- Investigation domain composed by 1485 cells with 4 mm side
- Frequency hopping started from 500 Mhz and with step 50 MHz.
- Range of values of the exponent function: [1.4,2].
- □ Initial exponent map: constant value equal to 1.4.
- I. Bisio et al., "Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020.

Reconstructed dielectric properties (variable exponent approach)


© 2020 IEEE. Reprinted, with permission, from [1].

Brain stroke detection – Numerical results

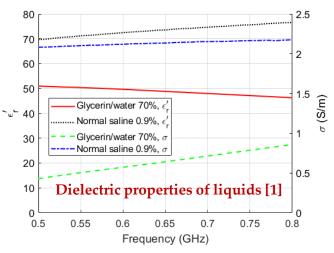
Measurement configuration


- □ Ellipsoidal inclusion: hemorrhagic brain stroke at (11.7, 17.2, 17.5) cm
- □ Healthy head profile used as reference model
- □ Investigation domain composed by 1485 cells with 4 mm side
- □ Frequency hopping started from 500 MHz and with step 50 MHz.
- □ Range of values of the exponent function: [1.4,2].
- □ Initial exponent map: **obtained by applying the DAS scheme**.

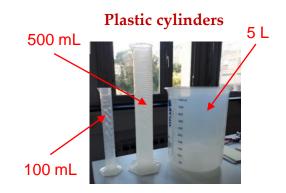
Reconstructed dielectric properties at 0.7 GHz

Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture Polytechnic School, University of Genoa

Brain stroke detection – Experimental results


 I. Bisio et al., "Brain stroke microwave imaging by means of a Newtonconjugate-gradient method in Lp Banach spaces," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3668–3682, Aug. 2018.

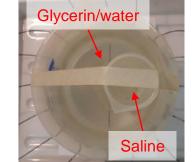
© 2018 IEEE. Reprinted, with permission, from [1].


Preliminary experimental results

Target properties

- **Outer structure** (filled with 70% glycerin/water mixture)
 - 5 L PP beaker (external diameter of 180 mm, 4 mm thickness) filled with 70% glycerin/water mixture
- Cylindrical inclusions (filled with 0.9% saline solution)
 - 100 mL PP circular cylinder, 20 mm diameter
 - 500 mL PP circular cylinder, 52 mm diameter
- Configuration parameters
 - Coupling medium (70% glycerin/water mixture) in PE bags (40 x 80 mm, 100 μm thick, 20 ml volume) around the outer cylinder
 - Investigation domain partitioned into $N_i = 1264$ square cells of side $d_i = 4.5$ mm
- Parameters of the inverse solver
 - $p_{start} = p_{min} = 1.4, p_{max} = 2.0$
 - Number of maximum allowed inner and outer iterations to $N_{IN} = N_{LW} = 100$, minimum residual variation $r_{IN} = r_{LW} = 0.35$

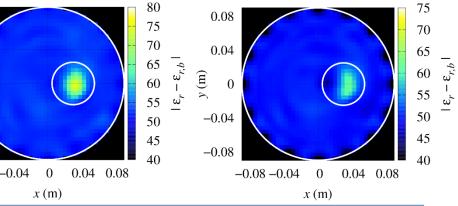
 $\ensuremath{\mathbb{C}}$ 2020 IEEE. Reprinted, with permission, from [1].



 I. Bisio, C. Estatico, A. Fedeli, F. Lavagetto, M. Pastorino, A. Randazzo, and A. Sciarrone, "Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020.

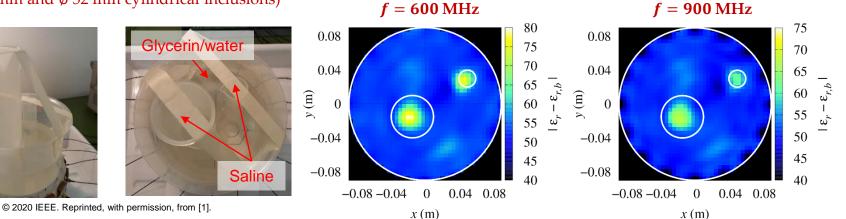
Preliminary experimental results

Target configuration – Single circular inclusion (Ø 52 mm cylindrical inclusion)



© 2020 IEEE. Reprinted, with permission, from [1].

Reconstructed relative dielectric properties (variable exponent)


f = 600 MHz0.08 0.04 *y* (m) -0.04-0.080.04 0.08 -0.08 - 0.040

 $f = 900 \, \text{MHz}$

Target configuration – Two circular inclusions (\emptyset 20 mm and \emptyset 52 mm cylindrical inclusions)

Reconstructed relative dielectric properties (variable exponent)

I. Bisio, C. Estatico, A. Fedeli, F. Lavagetto, M. Pastorino, A. Randazzo, and A. Sciarrone, "Variable-exponent Lebesgue-space inversion for brain [1] stroke microwave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1882–1895, May 2020. 14

Conclusions

- A novel tomographic multistatic microwave imaging system for brain stroke detection has been designed
- □ A variable-exponent Lebesgue-space inversion scheme is adopted for processing the acquired data.
- □ Two initialization strategies have been considered:
 - Constant exponent function
 - Variable exponent function obtained by a delay-and-sum scheme.
- Numerical simulations and preliminary experimental results have been carried out
- □ Further activities will be devoted to
 - Improve the measurement system
 - Test the method in more realistic configurations, also with clinical data