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Introduction

I Wideband radio channels are characterized using the received power, mean delay, and rms
delay spread calculated from the first three raw temporal moments of the received signal y
defined as:

mi =

∫ ∞
0

|y(τ)|2τ idτ, i = 0, 1, 2 . . .

I Recently, temporal moments have been used to calibrate stochastic multipath models,
avoiding the need for multipath extraction.
[Bharti and Pedersen, 2020, Bharti et al., 2019c, Bharti et al., 2019a, Bharti et al., 2019b, Bharti et al., 2020]

I Temporal moments are widely used to sumarize data but analysis of their proporties has
been largely ignored in the literature.

I For stochastic multipath models, the raw temporal moments are jointly random variables.
I Mean: µi = E[mi ] =

∫
P(τ)τ idτ , where P(τ) is the power delay spectrum.

Welknown — see any propagation textbook!

I Covariance: σij = Cov(mi ,mj) = E[mimj ]− µiµj =?
To the author’s knowledge not been published. (Remarkably!)



Are Expressions for the Covariance Needed?

Having access to formulas connecting the temporal moments to model parameters help
designers to understand the connections between system and channel parameters.

I The mean alone does not carry information on the dispersion of the temporal moments.

I Without such formulas, it is necessary to run simulations to understanding the effects of
I channel model parameters, (e.g. path arrival rate)
I system parameters ( e.g. antenna directivity)

I It is in general difficult to relate the often reported ECDFs of rms delay spread to model
parameters.

I Recently, temporal moments have been recently modeled as a jointly log normal with
mean and covariance as parameters. [Ayush Bharti, 2020]

In this contribution we derive a general expression for covariance of all temporal moments of
any Uncorrelated Scattering (US) stochastic multipath model. We apply this general expression
to Turin’s multipath model.



Stochastic Multipath Models as a Point Process

Multipath models for the radio channel yield a
received signal of the form:

y(t) =
∑
x∈X

αxs(t − τx).

where x denotes the pair (τx , αx) of delay τx
and complex gain αx .

The collection of pairs X = {x1, x2, x3, . . . } is a
marked point process with points {τx} and
associated marks {αx}.

The intensity function, or arrival rate, is
denoted by λ(t).

The conditional mean square of the marks is
denoted by σ2

α(τ) = E[|αx |2|τx = τ ]

The power delay spectrum: P(τ) = σ2
α(τ)λ(τ)



Mean of Temporal Moments

For simplicity, assume high signal bandwidths, such that the
temporal moment read

mi =
∑
x∈X
|αx |2τ ix , i = 0, 1, 2, . . .

Law of total expectation and Campbell’s theorem gives the
wellknown,

µi = E[mi ] =

∫
σ2
α(τ)λ(τ)τ idτ =

∫
P(τ)τ idτ, i = 0, 1, 2, . . .

Notice that the power delay spectrum P(τ) completely specifies
the means of all the temporal moments.

First order Campbell Theorem:

E[
∑
x∈X

f (x)] =

∫
f (x)λ(x)dx

where f (x) is some function of a
single point and λ(x) is the
intensity function of X .

Interpretation:
λ(x)dx ≈ Prob. of a point in dx.



Covariance of Temporal Moments

To obtain the covariance σij = Cov(mi ,mj) = E[mimj ]− µiµj , it
suffices to compute E[mimj ]. By the law of total expectation,

E[mimj ] =

∫∫
E

∑
x,x′

A(τx , τx′)τ ix · τ
j
x′

 dτxdτx′

with A(τx , τx′) = E[|αx |2|αx′ |2|τx , τx′ ]. First and second order
Campbell theorems lead to

E[mimj ] =

∫
A(τ, τ)λ(τ)τ i+jdτ +

∫∫
A(τ, τ ′)λ(2)(τ, τ ′)τ iτ j

′
dτ

This result gives (convergence provided) the covariance structure
for the temporal moments for any model where A(τ, τ ′), λ(τ) and
λ(2)(τ, τ ′) are known.

Second order Campbell Thm:

E[
∑
x 6=x′

g(x , x ′)] =

∫∫
g(x , x ′)λ(2)(x , x ′)dxdx ′

where g(x , x ′) is some function
of pairs of points and λ(2)(x , x ′)
is the “second order factorial
intensity function” of X .

Interpretation:
λ(2)(x , x ′)dxdx ′ ≈ Prob. of a
point in each of dx and dx ′



Example: Application to Turin’s Model

For Turins model [Turin et al., 1972], the mean of the temporal moments are wellknown, but
the covariance does not appear in the literature.

I Here, X is an independently marked Poisson process specified by the arrival rate λ(τ) and
the conditional mark density p(α|τ).

I For a Poisson point proceses, λ(2)(τ, τ ′) = λ(τ)λ(τ ′).

I Since the marks are independent, we have

A(τ, τ ′) =

{
κα(τ), τ = τ ′

σ2
α(τ)σ2

α(τ ′), τ 6= τ ′

with second and fourth moments of p(α|τ) are denoted as σ2
α(τ) and κα(τ), respectively.

I Then our equation for the covariance, gives after cancelling terms

σij =

∫
κα(τ)λ(τ)τ i+jdτ.



Example: Application to Turin’s Model — Remarks

I For specific λ(τ), and κα(τ), the resulting integral

σij =

∫
κα(τ)λ(τ)τ i+jdτ

can be computed analytically or numerically.

I For some i , j settings, covariances are undefined and the integral diverges.

I Distinct settings with the same power delay spectra, and thus mean temporal moments,
may lead to very different covariance structures.

I This confirms observations from [Pedersen, 2018, Pedersen, 2019] that models with the
same power delay spectrum, but different higher moment spectra, produced different
distribution of temporal moments.



Simulation Example: Room Electromagnetics Turin Model

We simulate a special case of the Turin model was studied for the room electromagnetic
setting in [Pedersen, 2019] specified as:

P(t) = G0 exp(−t/T ), t > 0, λ(t) = atb, t > 0

The reverberation gain G0, reverberation time T and the arrival rate parameters a and b
control the model.

Mark distribution p(α|τ): circular complex Gaussian with conditional second moment
σ2
α(τ) = P(τ)/λ(τ).

For this model, we obtain analytical results:

µi = G0T
i+1i ! and σij =

2G 2
o

a

(
T

2

)i+j−b

Γ(i + j − b + 1), i + j − b + 1 > 0.



Simulation Example (Contd.)

We compare the theoretical to Monte Carlo simulations with the settings according to room
electromagnetics:

G0 =
4πc

V
, T = − 4V

cS ln g
, a =

4πc3ω2

V
, b = 2.

I V: room volume

I S: room surface area

I c: speed of light

The beam coverage fraction ω accounts for the
directivity of the transmitter and receiver
antennas. Isotropic antennas: ω = 1.
Hemisphere antennas ω = 0.5.

The power delay spectrum is not affected by ω.

Simulation Settings

Parameter Value

Room dim. 5× 5× 3m3

g 0.6
c 3 · 108 m/s

Max sim. time tmax 120ns
No. Monte Carlo runs 104



Simulation: Mean and Standard Deviation of Temporal moments
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Simulated and theoretical mean and standard
deviation of temporal moments as functions of ω.

I The expression for the variance of m0 diverges.

I The simulation results follow closely the
theoretical values.

I Mean values of the temporal moments are
unaffected by ω.

I Variance (standard deviations) depend on ω.

I Higher antenna directivity (lower ω) gives
higher variance of temporal moments.



Simulation: Distribution of Temporal Moments

I Empirical distribution of
temporal moments with ω as
parameter.

I Log-normal distributions are
included according to
[Ayush Bharti, 2020] with
theoretical mean and variance.

I Mostly, the temporal moments
are well modeled by a log-normal
distribution.

I The effect of ω on the
distributions of moments is well
captured, especially for m2.



Conclusion
I The expression enable us to compute and analyse the impact of model parameters on the

covariance structure of temporal moments:
I The mean depends the arrival rate λ.
I The covariance depends on the second-order factorial intensity λ(2)

I This highlights the importance of λ(2) in a stochastic channel model, an entity which is
commonly ignored.

I The results are applicable to models for which λ(2) can be obtained.

I This entity is known for the Poisson process, but also for many others such as binomial and
Cox process.

I For stochastic mutipath models which can be identified as a wellknown point process, our
result is straight-forward to apply.

I Currently work is ongoing to obtain the mean and covariance of received power, mean
delay and rms delay spread also.
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