Triple Frequency Diversity and Frequency Scaling Experimental Campaign in Attica, Greece: Preliminary Results

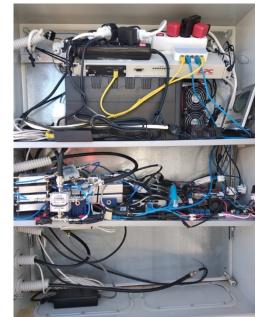
<u>Apostolos Z. Papafragkakis (NTUA),</u> Charilaos I. Kourogiorgas (NTUA), Athanasios D. Panagopoulos (NTUA)

URSI GASS 2020 Rome, Italy, 29 August - 5 September 2020

Agenda

- Introduction
- Campaign details
- In-excess Attenuation Evaluation
- Frequency Correlation Statistics
- Frequency Diversity Examples
- Conclusions & future work

- Current situation:
 - Demand for very high data rate services
 - Constant, ubiquitous coverage is essential
 - Low latency and high availability vital to meeting high QoS


- Migration to higher frequency bands for feeder links (Ka, Q/V):
 - Massive bandwidth available (5 GHz for V-band)
 - Signal propagation severely impaired by atmospheric phenomena
 - Gases, clouds, **<u>rain</u>** and tropospheric turbulence
 - Sole use of fade margins not suffice
 - Fade Attenuation > 20 dB for non-negligible percentage of time
 - Fading Mitigation Techniques (FMTs) required:
 - Uplink Power Control, not always effective
 - Site Diversity
 - Lack of accurate propagation models
 - New measurement campaigns necessary

- Propagation Measurements:
 - Non-trivial task
 - High cost
 - Long duration
 - Dependent on geographic location
 - Multiple measurement sites required
 - Use of satellite beacons to assess signal attenuation
 - ESA made available ALPHASAT TDP #5
 - Software Defined Radio solutions available
 - Currently many measurement campaigns ongoing across Europe

- Receivers located in Attica, Greece
- Concurrent measurements using ALPHASAT's beacons and Badr 5 telemetry beacon
 - Ku-band: 11.699 GHz, vertical pol (Badr 5)
 - Ka-band: 19.701 GHz, vertical pol (Alphasat)
 - Q-band: **39.402 GHz**, 45° pol (Alphasat)

Freq. Band	Satellite	Orbit. Pos	Frequency	Pol.
Ku	Badr 5	26.0°E	11.699 GHz	V
Ka	Alphasat	25.0°E	19.701 GHz	V
Q	Alphasat	25.0°E	39.402 GHz	450

- Results presented for the first one year of measurements
- Coordinated measurements since July 2017 for the three bands
- Truly concurrent, common format measurements (netCDF files, metatags)
- Ancillary equipment also installed:
 - Weather stations, rain gauges etc.
 - Weather data available from local meteo offices

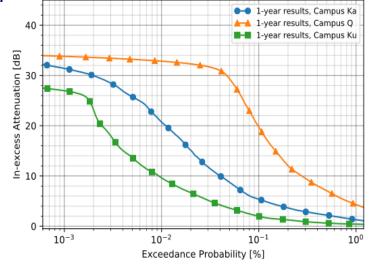
- NTUA Receivers:
 - Cost-effective solution
 - Based on Software Defined Radio (SDR)
 - Antennas:
 - 1.2 m offset for Ku-band
 - 1.2 m offset for Ka-band
 - 0.6 m shrouded parabolic for Q-band
 - FFT based power estimation
 - Developed around GNU Radio framework
 - Elevation Tracking for Ka- & Q-band (developed in-house)
 - 10 Hz output data sampling rate
 - Dynamic Range:
 - > 30 dB for Ku-band
 - > 40 dB for Ka-band
 - > 35 dB for Q-band

- EML ARG 100 tipping bucket rain gauge installed
 - Accuracy of 0.2 mm of rainfall per tip
 - Sampling rate of 1 Hz

outside view

inside view

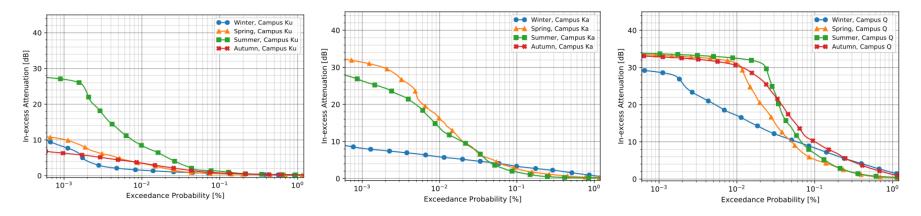
- 12 months of fully coordinated operation are presented (January to December 2018)
- Campaign still ongoing; expected to last as long as ALPHASAT's Ka- and Q-band beacons are available
- Power spectral analysis is performed on a daily basis
 - Check the quality of the received signals


In-excess Attenuation Evaluation

- Complementary Cumulative Distribution Functions (CCDFs) for the three frequency bands are presented
- Q-band exhibits the worst performance
 - very prone to rain precipitation, also affected by to clouds and fog
- Ka-band does not appear to be very sensitive to clouds
 - still heavily affected by rain
- Ku-band seems to be more robust to atmospheric phenomena
 - rare cases of in-excess attenuation levels exceeding 10-15 dB

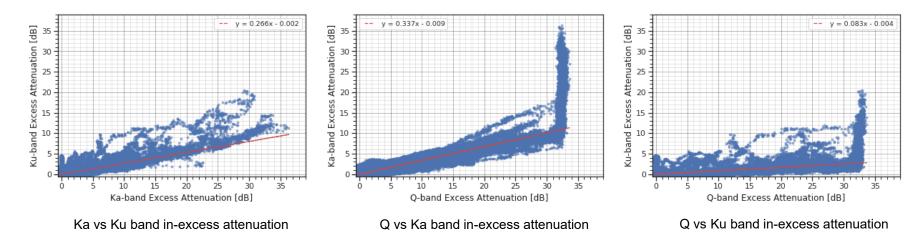
Utilization of more sophisticated FMTs required

 A fade margin to compensate for propagation losses is insufficient and could lead to frequent service disruption

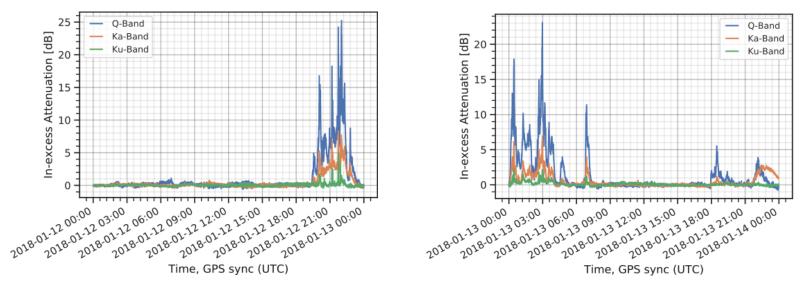

Frequency Band	Data Availability	
Ku-band	98.82 %	
Ka-band	99.07 %	
Q-band	96.63 %	

Overall (one-year) in-excess attenuation statistics for the three frequency bands

In-excess Attenuation Evaluation


- Seasonal CCDFs of In-excess Attenuation
- The south Mediterranean climate of Greece is quite unique;
- The worst season in terms of attenuation (at least for the year 2018) was summer
 - more particularly June and July where very strong attenuation events (even beyond the available dynamic range of the receivers) were recorded.

Seasonal in-excess attenuation statistics for Ku-, Ka- and Q-band for 2018


Frequency Correlation Statistics

- The scatter plots between Ka-Ku, Q-Ka and Q-Ku are depicted below
- Only one year of measurements has been included
 - the results are not conclusive
 - a general tendency can still be obtained.
- The vertical tendency in the two rightmost figures is attributed to the lower dynamic range that the Q-band receiver offers

Frequency Diversity Examples

- Time series for two days in January 2018 (12-13/01/2018) are shown;
- The difference in attenuation magnitude across the three bands
 - is quite pronounced
 - could be employed to keep a service operational, yet at lower performance.

In-excess attenuation timeseries for 12 & 13 January 2018

Conclusions & future work

- Ongoing measurement campaigns in Greece have been presented
- As more results are collected and processed a more elaborate analysis will follow.
- It would be interesting to:
 - verify how frequency scaling models perform
 - to possibly attempt to improve them by exploiting the actual measurement data acquired
- In general, the collected data shall:
 - populate scientific databases (e.g. ITU-R SG3)
 - assist the development and validation of
 - new propagation models
 - FMTs
 - small/large site diversity techniques

Thank you very much for your time and attention!

Authors' email addresses: apapafrag@mail.ntua.gr, harkour@mail.ntua.gr, thpanag@ece.ntua.gr