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• Forward problem for a random set of (small) parallel cylinders: the scattering matrix 
method (SMM)

• Synthesis of EBG devices through the SMM



OUTLINE

• Inverse Scattering as a design tool and the inherent issues

• Forward problem for a random set of (small) parallel cylinders: the scattering matrix 
method (SMM)

• Synthesis of EBG devices through the SMM



inverse scattering problem 
(ISP)
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Let be : 

• W the region under investigation embedding the 
unknown target S

• G the observation domain; it is usually a surface enclosing
W

• 𝐸! 𝒓, 𝒓𝒕 the incident field illuminating W from 𝒓𝒕
impinging directions

• 𝐸# 𝒓𝒎, 𝒓𝒕 the scattered field measured at 𝒓𝒎
observation directions in G, due to the induced contrast 
source 𝑾(𝒓, 𝒓𝒕) inside W
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𝒓 ∈ Ω,	 𝒓𝒕, 𝒓𝒎 ∈ Γ

𝑬𝒔 𝒓𝒎, 𝒓𝒕 = 𝓐𝒆 𝑾(𝒓, 𝒓𝒕)

𝑾 𝒓, 𝒓𝒕 = 𝝌𝑬𝒊 𝒓, 𝒓𝒕 + 𝝌𝓐𝒊 𝑾(𝒓, 𝒓𝒕)

‘data equation’

‘state equation’

CONTRAST SOURCE   𝑾 = 𝝌𝑬

𝒓 ∈ 𝛀, 𝒓𝒎, 𝒓𝒕 ∈ 𝚪

CONTRAST FUNCTION
encodes target properties
(e.m. parameters, shape)

𝜒 𝒓 =
𝜀% 𝒓
𝜀&(𝒓)

− 1

The inverse scattering problem is described by two main equations :

NOTE: 𝝌 and 𝑾 are unknowns ! The only available data are 𝐸! and 𝐸#. 
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non-linear and ill-posed inverse problem
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The inverse scattering problem is described by two main equations :



Inverse Scattering as a design tool

THE USUAL AIM:
Given a set of incident fields, find the e.m. characteristics of the region under test (i.e., 𝜒 𝒓 ) in such a
way that the scattered (total) field obeys the collected measurements
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Inverse scattering theory and solution procedures can be seen as a design tool 
rather than as a mean for recovery/imaging

Innovative devices can be hopefully designed   
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ISP-based design procedure

[*] R. Palmeri, et al., “Design of Artificial-Materials-Based Antennas Using Inverse Scattering Techniques”, IEEE TAP 2018.

ISP 
inversion 
algorithm

Manufacturing a GRIN (GRADED refractive index) device is not a trivial task

Sometimes, homogenization techniques do not work

device



A design example: direct synthesis of a Graded 
Artificial Material (GAM)-based device 

𝜒 𝒓 = )
%&'

(

𝜒% Π 𝒓

Π 𝒓 is the representation basis projecting 𝜒 into the 
space of ‘inclusions’

𝜒$ coefficients are the new unknowns of the problem 

A novel expansion for the contrast function
allowing the direct synthesis of GAM-based device

𝜒 𝒓 = .
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𝒓 − 𝒓𝒌𝒉
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GAM with a gradient of the refractive index (GAMR)

…..

𝝌𝟏 𝝌𝟐 𝝌𝟑 𝝌𝟒 𝝌𝑲

[*] R. Palmeri, et al., “Design of Artificial-Materials-Based Antennas Using Inverse Scattering Techniques”, IEEE TAP 2018.



Smaller and smaller mesh elements à higher and higher number of unknowns 
Staircasing errors

• Less flexibility with respect to the ‘kind’ of unknowns (radius, position of the inclusions)

• Most of inversion algorithms are based on discretization of the investigation domain in 
subdomains/cells and are not suitable for GAM design.

Pro and Cos of the ISP-based 
GAM design

• Dielectric profiles obeying non-canonical solutions 

• Dielectric profiles satisfying desired spatial distributions constraints

• Multi-view Inverse Scattering Problems turn into multi-purpose device



OUTLINE
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Multiple scatterers oriented tool:
Scattering Matrix Method (SMM)
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Modal expansion of the total field outside cylinders

𝐸*+* 𝑟 = )
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𝑎ℓ,,𝐽, 𝑘𝑟ℓ 𝑒2,3ℓ + )
,&-.
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𝑏ℓ,,𝐻,
(5) 𝑘𝑟ℓ 𝑒2,3ℓ

local incident field on cylinder 𝒞ℓ
(i.e., primary + secondary incident field) 

scattered field by cylinder 𝒞ℓ

[*] D. Felbacq, et al., “Scattering by a random set of parallel cylinders”, JOSA A 1994.

In a matrix form the interactions amongst 
the different cylinders are described by:

aℓ = Qℓ + .
!(),!6ℓ

7

T!,ℓb! LINEAR RELATIONSHIP 
FOR EACH CYLINDER 

𝑁 being the number of inclusions



Multiple scatterers oriented tool:
Scattering Matrix Method (SMM)
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As one can 
write bℓ = 𝑺ℓaℓ

bℓ − .
!(),!6ℓ

7

𝑺ℓ𝑻ℓ,! b𝒊 = 𝑺ℓQℓ ℓ = 1, . . , 𝑁

LINEAR SYSTEM IN THE UNKNOWN 
SCATTERING COEFFICIENTS b𝓵

𝐰𝐡𝐞𝐫𝐞 𝑺ℓ is the 
‘scattering matrix’ of the 
inclusion, and depends 
on its characteristics 

[*] D. Felbacq, et al., “Scattering by a random set of parallel cylinders”, JOSA A 1994.



Multiple scatterers oriented tool:
Scattering Matrix Method (SMM)
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- Specific scattering properties of each object are considered

- Coupling phenomena between objects are taken into account

- Computational complexity grows with the perimeters of the different

inclusions (rather than with volume of the region under test)

- No staircasing errors

bℓ − .
!(),!6ℓ

7

𝑺ℓ𝑻ℓ,! b𝒊 = 𝑺ℓQℓ ℓ = 1, . . , 𝑁

[*] D. Felbacq, et al., “Scattering by a random set of parallel cylinders”, JOSA A 1994.
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Let consider the expanded arrayal form of the linear system:

Inverse formulation of the SMM (I-SMM)

and remember that [*] : 

• the square matrix 𝐓7,) of the (m,q)-th element T7,),,,8 takes into account the coupling mutual interactions
• the column matrix 𝐐7 of m-th element Q7,, represents the coefficients of the Fourier-Bessel expansion of

primary incident fields
• the square matrix 𝐒7 is the scattering matrix and depends on the parameters of the l-th cylinder
• the column matrix 𝒃7 of m-th element 𝑏7,, represents the coefficients of the rigorous modal expansion of the

scattered field

[*] D. Felbacq, et al., “Scattering by a random set of parallel cylinders”, JOSA A 1994.



Inverse formulation of the SMM (I-SMM)
Let consider the expanded arrayal form of the linear system:
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Determine cylinders’ parameters able to 
behave like a desired device.

CONCEPTUAL DESIGN PROBLEM

Determine 𝐒; and 𝒃; able to scatter a 
given field on a given surface.

MATHEMATICAL DESIGN PROBLEM
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The (new) inverse scattering equations

𝐸# 𝑅, 𝜃 =.
!()
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𝑏!,<𝐻<
(A) 𝛽𝑅 𝑒C<D , 𝑅 ∉ 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠 data  equation

state  equation

wherein                                                                   and 𝑠, depends on the kind of inclusion (dielectric,   
metallic, magnetics,..) and its dimension

Inverse formulation of the SMM (I-SMM)

𝑺𝒏 =

𝑠-: 0 0 0 0
0 ⋱ 0 0 0
0 0 𝑠, 0 0
0 0 0 ⋱ 0
0 0 0 0 𝑠:



Design procedure

𝑫𝒆𝒕𝒆𝒓𝒎𝒊𝒏𝒆 𝒊𝒏𝒄𝒍𝒖𝒔𝒊𝒐𝒏𝒔 𝑫𝒊 𝒔𝒖𝒄𝒉 𝒕𝒐

Φ = min
@",A

𝐸BCB 𝑟 − 𝐸BCB
DEFGHIHFJ 𝑟 K

L

𝐸BCB
DEFGHIHFJ 𝑟 K

L

𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒄𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 𝒐𝒏 𝑫𝒊.

N.B.1. 𝑫𝒊 could mean permittivity, radius, both ones, …

N.B.2. Favourable starting points are needed to find a satisfying solution



Numerical Assessment

Design of a beam-forming network for
antennas array



Design of a beam-forming network for
antennas array



Numerical Assessment

Design of a beam-forming network for
antennas array

Optimization of basic elements



Basic element #1: EBG straight waveguide
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Basic element #1: EBG straight waveguide

OPTIMIZATION PROBLEM

min
M#

max 𝐸BCB −min 𝐸BCB
2 N$%&'"()

subject to

𝜀O
PE = 𝜀OJCQR
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Basic element #1: EBG straight waveguide
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Basic element #1: EBG straight waveguide
|Etotz| defect
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Basic element #2: 60° bend EBG waveguide
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Basic element #2: 60° bend EBG waveguide
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Basic element #3: 90° bend EBG waveguide
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Basic element #3: 90° bend EBG waveguide
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Basic element #4: 50-50 EBG power splitter
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Basic element #4: 50-50 EBG power splitter
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Conclusions

• Inverse scattering theory and solution procedures can be used as convenient and flexible
design tool.

• A new suitable and efficient design tool based on the Scattering Matrix Method has been proposed and 
preliminary assessed

• The method is roughly two orders of magnitude faster than the previous full wave method;

• Classes of possible inclusions and objective functions can be exploited.

• Future works: other devices (for instance, EBG phase shifter, 75-25 power splitter, …), other inclusion 
shapes (for instance elliptical), unknown arrangements.
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