URSI GASS 2021
28 AUGUST - 4 SEPTEMBER

On the Feasibility of Using Inverse Scattering to Optimize the Design of EBG Devices

Roberta Palmeri and Tommaso Isernia

DIIES, Università Mediterranea of Reggio Calabria, Italy

OUTLINE

- Inverse Scattering as a design tool and the inherent issues
- Forward problem for a random set of (small) parallel cylinders: the scattering matrix method (SMM)
- Synthesis of EBG devices through the SMM

OUTLINE

- Inverse Scattering as a design tool and the inherent issues
- Forward problem for a random set of (small) parallel cylinders: the scattering matrix method (SMM)
- Synthesis of EBG devices through the SMM

inverse scattering problem (ISP)

Let be :

- $\boldsymbol{\Omega}$ the region under investigation embedding the unknown target Σ
- Γ the observation domain; it is usually a surface enclosing Ω
- $E_{i}\left(\boldsymbol{r}, \boldsymbol{r}_{\boldsymbol{t}}\right)$ the incident field illuminating $\boldsymbol{\Omega}$ from $\boldsymbol{r}_{\boldsymbol{t}}$ impinging directions
- $E_{S}\left(\boldsymbol{r}_{\boldsymbol{m}}, \boldsymbol{r}_{\boldsymbol{t}}\right)$ the scattered field measured at $\boldsymbol{r}_{\boldsymbol{m}}$ observation directions in Γ, due to the induced contrast source $\boldsymbol{W}\left(\boldsymbol{r}, \boldsymbol{r}_{\boldsymbol{t}}\right)$ inside $\boldsymbol{\Omega}$

inverse scattering problem
$E_{i}\left(\boldsymbol{r}, \boldsymbol{r}_{\boldsymbol{t}}\right), E_{S}\left(\boldsymbol{r}_{\boldsymbol{m}}, \boldsymbol{r}_{\boldsymbol{t}}\right)$ $r \in \Omega, r_{t}, r_{m} \in \Gamma$

CONTRAST FUNCTION encodes target properties (e.m. parameters, shape)
$E_{s}\left(\boldsymbol{r}_{\boldsymbol{m}}, \boldsymbol{r}_{t}\right)=\mathcal{A}_{e}\left[W\left(\boldsymbol{r}, \boldsymbol{r}_{\boldsymbol{t}}\right)\right]$ 'data equation'

$$
r \in \Omega, r_{m}, r_{t} \in \Gamma
$$

$W\left(r, r_{t}\right)=\chi E_{i}\left(r, r_{t}\right)+\chi \mathcal{A}_{i}\left[W\left(r, r_{t}\right)\right]$ 'state equation'

NOTE: χ and W are unknowns! The only available data are E_{i} and E_{S}.

inverse scattering problem

$$
\begin{aligned}
& E_{i}\left(\boldsymbol{r}, \boldsymbol{r}_{\boldsymbol{t}}\right), E_{S}\left(\boldsymbol{r}_{\boldsymbol{m}}, \boldsymbol{r}_{\boldsymbol{t}}\right) \\
& \boldsymbol{r} \in \Omega, \boldsymbol{r}_{\boldsymbol{t}}, \boldsymbol{r}_{\boldsymbol{m}} \in Г
\end{aligned}
$$

$$
\chi(\boldsymbol{r})=\frac{\varepsilon_{x}(\boldsymbol{r})}{\varepsilon_{b}(\boldsymbol{r})}-1
$$

The inverse scattering problem is described by two main equations:
CONTRAST FUNCTION encodes target properties

$$
\text { CONTRAST SOURCE } W=\chi E
$$

$$
\begin{aligned}
& E_{S}\left(\boldsymbol{r}_{m}, \boldsymbol{r}_{t}\right)=\mathcal{A}_{e}\left[\boldsymbol{W}\left(\boldsymbol{r}, \boldsymbol{r}_{t}\right)\right] \quad \text { 'data equation' } \quad r \in \Omega, r_{m}, r_{t} \in \Gamma \\
& W\left(\boldsymbol{r}, \boldsymbol{r}_{t}\right)=\chi E_{i}\left(\boldsymbol{r}, \boldsymbol{r}_{t}\right)+\chi \mathcal{A}_{i}\left[\boldsymbol{W}\left(\boldsymbol{r}, \boldsymbol{r}_{t}\right)\right] \text { 'state equation' }
\end{aligned}
$$

Inverse Scattering as a design tool

THE USUAL AIM:

Given a set of incident fields, find the e.m. characteristics of the region under test (i.e., $\chi(r)$) in such a way that the scattered (total) field obeys the collected measurements

Inverse Scattering as a design tool

THE USUAL AIM:

Given a set of incident fields, find the e.m. characteristics of the region under test (i.e., $\chi(r)$) in such a way that the scattered (total) field obeys the collected measurements

A DIFFERENT AIM:

Given a set of incident fields, find the e.m. characteristics of the region under test (i.e., $\chi(r)$) in such a way that the scattered (total) field obeys to given specifications

Inverse Scattering as a design tool

THE USUAL AIM:

Given a set of incident fields, find the e.m. characteristics of the region under test (i.e., $\chi(r)$) in such a way that the scattered (total) field obeys the collected measurements

A DIFFERENT AIM:

Given a set of incident fields, find the e.m. characteristics of the region under test (i.e., $\chi(r)$) in such a way that the scattered (total) field obeys to given specifications

Inverse scattering theory and solution procedures can be seen as a design tool rather than as a mean for recovery/imaging

Innovative devices can be hopefully designed

ISP-based design procedure

Manufacturing a GRIN (GRADED refractive index) device is not a trivial task
Sometimes, homogenization techniques do not work

A design example: direct synthesis of a Graded Artificial Material (GAM)-based device

A novel expansion for the contrast function allowing the direct synthesis of GAM-based device

$$
\chi(\boldsymbol{r})=\sum_{k=1}^{K} \chi_{k} \Pi(\boldsymbol{r})
$$

$\Pi(r)$ is the representation basis projecting χ into the space of 'inclusions'

GAM with a gradient of the refractive index ($\mathrm{GAM}_{\mathrm{R}}$)

χ_{k} coefficients are the new unknowns of the problem

Pro and Cos of the ISP-based GAM design

- Dielectric profiles obeying non-canonical solutions
- Dielectric profiles satisfying desired spatial distributions constraints
- Multi-view Inverse Scattering Problems turn into multi-purpose device
- Most of inversion algorithms are based on discretization of the investigation domain in subdomains/cells and are not suitable for GAM design.

Smaller and smaller mesh elements \rightarrow higher and higher number of unknowns
Staircasing errors

- Less flexibility with respect to the 'kind’ of unknowns (radius, position of the inclusions)

OUTLINE

- Inverse Scattering as a design tool and the inherent issues
- Forward problem for a random set of (small) parallel cylinders: the scattering matrix method (SMM)
- Synthesis of EBG devices through the SMM

Multiple scatterers oriented tool: Scattering Matrix Method (SMM)

Modal expansion of the total field outside cylinders

$$
\begin{aligned}
& E_{t o t}(\underline{r})=\sum_{\|=-\infty}^{+\infty} a_{\ell, m} J_{m}\left(k r_{\ell}\right) e^{j m \theta_{\ell \|}}+_{\|}^{\|_{\|}^{+\infty}} \sum_{\ell, m} H_{m}^{(2)}\left(k r_{\ell}\right) e^{j m \theta_{\ell}} \\
& \text { local incident field on cylinder } \mathcal{C}_{\ell} \text { scattered field by cylinder } \mathcal{C}_{\ell} \\
& \text { (i.e., primary + secondary incident field) }
\end{aligned}
$$

In a matrix form the interactions amongst the different cylinders are described by:

$$
\mathbf{a}_{\ell}=\mathbf{Q}_{\ell}+\sum_{i=1, i \neq \ell}^{N} \mathrm{~T}_{i, \ell} \mathbf{b}_{i}
$$

Multiple scatterers oriented tool: Scattering Matrix Method (SMM)

As one can write

$$
\mathbf{b}_{\ell}=S_{\ell} \mathbf{a}_{\ell}
$$

where S_{ℓ} is the 'scattering matrix' of the inclusion, and depends on its characteristics

$$
\mathbf{b}_{\ell}-\sum_{i=1, i \neq \ell}^{N} \boldsymbol{S}_{\ell} \boldsymbol{T}_{\ell, i} \mathbf{b}_{\boldsymbol{i}}=\boldsymbol{S}_{\ell} \mathbf{Q}_{\ell} \quad \quad \quad=1, \ldots, N
$$

Multiple scatterers oriented tool: Scattering Matrix Method (SMM)

$$
\mathbf{b}_{\ell}-\sum_{i=1, i \neq \ell}^{N} \boldsymbol{S}_{\ell} \boldsymbol{T}_{\ell, i} \mathbf{b}_{\boldsymbol{i}}=\boldsymbol{S}_{\ell} \mathbf{Q}_{\ell} \quad \quad \quad=1, \ldots, N
$$

- Specific scattering properties of each object are considered
- Coupling phenomena between objects are taken into account
- Computational complexity grows with the perimeters of the different inclusions (rather than with volume of the region under test)
- No staircasing errors

OUTLINE

- Inverse Scattering as a design tool and the inherent issues
- Forward problem for a random set of (small) parallel cylinders: the scattering matrix method (SMM)
- Synthesis of EBG devices through the SMM

formulation of the SMM

Let consider the expanded arrayal form of the linear system:

$$
\left(\begin{array}{cccc}
\mathbf{I} & -\mathbf{S}_{1} \mathbf{T}_{1,2} & \ldots & -\mathbf{S}_{1} \mathbf{T}_{1, N} \\
-\mathbf{S}_{2} \mathbf{T}_{2,1} & \mathbf{I} & \ldots & -\mathbf{S}_{2} \mathbf{T}_{2, N} \\
\ldots . & \ldots & \ldots & \ldots \\
-\mathbf{S}_{\mathbf{N}} \mathbf{T}_{\mathrm{N}, 1} & -\mathbf{S}_{\mathbf{N}} \mathbf{T}_{\mathrm{N}, 2} & \ldots & \mathbf{I}
\end{array}\right)\left(\begin{array}{c}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\ldots \\
\mathbf{b}_{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{S}_{1} \mathbf{Q}_{\mathbf{1}} \\
\mathbf{S}_{\mathbf{2}} \mathbf{Q}_{2} \\
\ldots \\
\mathbf{S}_{\mathrm{N}} \mathbf{Q}_{\mathrm{N}}
\end{array}\right)
$$

and remember that [*]:

- the square matrix $\mathbf{T}_{l, i}$ of the (m, q)-th element $\mathrm{T}_{l, i, m, q}$ takes into account the coupling mutual interactions
- the column matrix \mathbf{Q}_{l} of m-th element $\mathrm{Q}_{l, m}$ represents the coefficients of the Fourier-Bessel expansion of primary incident fields
- the square matrix \mathbf{S}_{l} is the scattering matrix and depends on the parameters of the l-th cylinder
- the column matrix \boldsymbol{b}_{l} of m-th element $b_{l, m}$ represents the coefficients of the rigorous modal expansion of the scattered field

Inverse formulation of the SMM (I-SMM)

Let consider the expanded arrayal form of the linear system:

$$
\left(\begin{array}{cccc}
\mathbf{I} & -\mathrm{S}_{1} \mathbf{T}_{1,2} & \ldots . & -\mathrm{S}_{1} \mathbf{T}_{1, \mathbf{N}} \\
-\mathrm{S}_{2} \mathbf{T}_{2,1} & \mathbf{I} & \ldots & -\mathbf{S}_{2} \mathbf{T}_{2, \mathrm{~N}} \\
\ldots, \\
\ldots \mathbf{S}_{\mathrm{N}} \mathbf{T}_{\mathrm{N}, 1} & -\mathrm{S}_{\mathrm{N}} \mathbf{T}_{\mathrm{N}, 2} & \ldots & \ldots \\
\mathbf{I}
\end{array}\right)\left(\begin{array}{c}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\ldots \\
\mathbf{b}_{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{c}
\mathrm{S}_{1} \mathbf{Q}_{1} \\
\mathrm{~S}_{2} \mathbf{Q}_{2} \\
\ldots \\
\mathrm{~S}_{\mathrm{N}} \mathbf{Q}_{\mathrm{N}}
\end{array}\right)
$$

CONCEPTUAL DESIGN PROBLEM

Determine cylinders' parameters able to behave like a desired device.

MATHEMATICAL DESIGN PROBLEM

Determine \mathbf{S}_{l} and \boldsymbol{b}_{l} able to scatter a given field on a given surface.

Inverse formulation of the SMM (I-SMM)

The (new) inverse scattering equations

$$
\begin{gathered}
\left(\begin{array}{cccc}
\mathbf{I} & -\mathbf{S}_{1} \mathbf{T}_{1,2} & \ldots & -\mathbf{S}_{\mathbf{1}} \mathbf{T}_{\mathbf{1}, \mathbf{N}} \\
-\mathbf{S}_{\mathbf{2}} \mathbf{T}_{\mathbf{2}, \mathbf{1}} & \mathbf{I} & \ldots & -\mathbf{S}_{\mathbf{2}} \mathbf{T}_{\mathbf{2}, \mathbf{N}} \\
\ldots & \ldots & & \ldots \\
-\mathbf{S}_{\mathbf{N}} \mathbf{T}_{\mathbf{N}, \mathbf{1}} & -\mathbf{S}_{\mathbf{N}} \mathbf{T}_{\mathbf{N}, \mathbf{2}} & \ldots & \mathbf{I}
\end{array}\right)\left(\begin{array}{c}
\mathbf{b}_{\mathbf{1}} \\
\mathbf{b}_{2} \\
\ldots \\
\mathbf{b}_{\mathbf{N}}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{S}_{\mathbf{1}} \mathbf{Q}_{\mathbf{1}} \\
\mathbf{S}_{\mathbf{2}} \mathbf{Q}_{\mathbf{2}} \\
\ldots \\
\mathbf{S}_{\mathbf{N}} \mathbf{Q}_{\mathbf{N}}
\end{array}\right) \\
E_{S}(R, \theta)=\sum_{i=1}^{N} \sum_{m=-M}^{+M} b_{i, m} H_{m}^{(2)}(\beta R) e^{j m \theta}, \quad R \notin \text { cylinders } \quad \text { state equation }
\end{gathered}
$$

$$
\text { wherein } \quad \boldsymbol{S}_{\boldsymbol{n}}=\left(\begin{array}{ccccc}
s_{-M} & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & 0 \\
0 & 0 & s_{m} & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & s_{M}
\end{array}\right) \quad \text { and } s_{m} \text { depends on the kind of inclusion (dielectric, }
$$

Design procedure

Determine inclusions D_{i} such to

$$
\Phi=\min _{D_{i}, \tau} \frac{\left\|E_{t o t}(\underline{r})-E_{\text {tot }}^{\text {specified }}(\underline{r})\right\|_{\Gamma}^{2}}{\left\|E_{\text {tot }}^{\text {specified }}(\underline{r})\right\|_{\Gamma}^{2}}
$$

subject to desired constraints on D_{i}.
N.B.1. D_{i} could mean permittivity, radius, both ones, ...

Numerical Assessment

Design of a beam-forming network for antennas array

Design of a beam-forming network for antennas array

Numerical Assessment

Design of a beam-forming network for antennas array

Optimization of basic elements

Basic element \#1: EBG straight waveguide

Basic element \#1: EBG straight waveguide

OPTIMIZATION PROBLEM

$\min _{\varepsilon_{r}}\left\{\frac{\max \left|E_{t o t}\right|-\min \left|E_{t o t}\right|}{2}\right\}_{\Lambda_{\text {shaping }}}$
subject to

$$
\varepsilon_{r}^{u p}=\varepsilon_{r}^{\text {down }}
$$

Basic element \#1: EBG straight waveguide

Basic element \#1: EBG straight waveguide

Basic element \#2: 60° bend EBG waveguide

Basic element \#2: 60° bend EBG waveguide

ripple_INPUT_channel $=0.4455$ ripple_OBLIQUE_channel $=0.4459$ ripple_OUTPUT_channel $=0.4380$

IEtot ${ }_{z}$ optimized defect

ripple_INPUT_channel $=0.2459$
ripple_OBLIQUE_channel $=0.1090$
ripple_OUTPUT_channel $=0.3573$
$\operatorname{Re}\left[\epsilon_{\mathrm{r}}\right]$

Basic element \#3: 90° bend EBG waveguide

Basic element \#3: 90° bend EBG waveguide

ripple_INPUT_channel $=0.8641$ ripple_VERTICAL_channel $=0.4762$ ripple_OUTPUT_channel $=0.3829$

IEtot ${ }_{z}$ I optimized defect

$\operatorname{Re}\left[\epsilon_{\mathrm{r}}\right]$

ripple_INPUT_channel $=0.2349$ ripple_VERTICAL_channel $=0.0556$
ripple_OUTPUT_channel $=0.1985$

Basic element \#4: 50-50 EBG power splitter

OPTIMIZATION PROBLEM

$$
\begin{aligned}
& \min _{\varepsilon_{r}}\left\{\text { Ripple }_{\left.\Lambda_{\text {shaping_A }}\right\}}\right\} \\
& \text { subject to }
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{r}^{u p}=\varepsilon_{r}^{\text {down }} \\
& \varepsilon_{r} \geq 1 \\
& \left\|\phi_{\Sigma_{A}}-0.5 \phi_{\Sigma_{I N}}\right\|_{2} \leq 0.001
\end{aligned}
$$

Basic element \#4: 50-50 EBG power splitter

ripple $=0.2545$
IEtot ${ }_{z}$ I optimized defect

$\operatorname{Re}\left[\epsilon_{\mathrm{r}}\right]$

Conclusions

- Inverse scattering theory and solution procedures can be used as convenient and flexible design tool.
- A new suitable and efficient design tool based on the Scattering Matrix Method has been proposed and preliminary assessed
- The method is roughly two orders of magnitude faster than the previous full wave method;
- Classes of possible inclusions and objective functions can be exploited.
- Future works: other devices (for instance, EBG phase shifter, 75-25 power splitter, ...), other inclusion shapes (for instance elliptical), unknown arrangements.

URSI GASS 2021
28 AUGUST - 4 SEPTEMBER

On the Feasibility of Using Inverse Scattering to Optimize the Design of EBG Devices

Roberta Palmeri and Tommaso Isernia
DIIES, Università Mediterranea of Reggio Calabria, Italy

Contact us

roberta.palmeri@unirc.it
tommaso.isernia@unirc.it

