Electrostatic Doping Assisted Push-Pull Mach-Zehnder Modulator For Optical Interconnects

Presentation for URSI GASS 2020 Rome, Italy

Subhradeep Pal¹, Soumi Saha² and Sumanta Gupta³

¹School of Electronics Engineering, KIIT, Bhubaneswar, Odisha-751024, India.
²Department of Electronics & Communication Engineering, UEM, Kolkata, West Bengal-700160, India.
³Department of Electrical Engineering, IIT Patna, Patna, Bihar-801106, India.

Email: subhradeep.palfet@kiit.ac.in

Contents

- Why Silicon Photonics?
- Optical Modulators in Photonics Integrated Circuits
 - Different Optical Modulator Structures
- Random Dopant Fluctuations and Its Origin
- Concept of Electrostatic Doping
- Proposed ED assisted Push-Pull MZM
 - Mathematical Model
 - Simulation Setup and Results
 - Comparative Performance Study
- Conclusions
- References

Why Silicon Photonics?

Problems in Present Design

- Fixed bandwidth capability.
- High power consumption.
- Scaling limitation.

Solution(s)

- Replacement of copper based interconnects by photonic interconnects.
- Integration of electronic and photonic circuits.

Why Silicon Photonics?

Advantages of Silicon

- Stable and well understood material.
- Mature fabrication technology.
- High optical confinement and refractive index.
- Optically transparent at 1.3 μ m to1.5 μ m.
- Electro-refraction and electro-absorption: dual method for optical modulation.
- Offers electronic and optical integration.

Requirements of Silicon Based Interconnects

- Power Requirement¹: Inter-chip: $\leq 100 \text{ fJ/bit}$; Intra-chip: $\leq 50-200 \text{ fJ/bit}$.
- Photodetectors integrated with transistors.
- Total time delay: 180-270 ps.
- Total power consumption: 18-20 mW.

Optical Modulators in Photonic Integrated Circuits

Optical Phase Shifters and Modulators

- Phase shifter introduces additional phase shift in guided-light.
- Additional phase shift: $\Delta \phi = (2\pi L \Delta n) / \lambda$
- Δn : Electro-optic effect (via free carrier plasma dispersion effect) or thermo-optic effect.
- Most common structure: PN/PIN diode or MOS Capacitor in a rib waveguide.

Different Modulator Structures

Different Optical Modulator Structures

Random Dopant Fluctuations

Source: Roy et al., Science Magazine, vol. 309, pp.388-389, July 2005.

Source: Gabriele Tocci, Masters Thesis, KTH, 2010.

Source: L. Gerrer et al., Microelectronics Reliability, vol. 52, pp. 1918-1923, 2012.

Insertion loss in MZM as a function of doping¹: I

$$: \left| \text{IL} = 2\alpha_{sp} + \left(A \cdot \sqrt{N_{dop}} + \frac{\alpha_{wg}}{\sqrt{N_{dop}}} \right) \cdot B \right|$$

where α_{sp} : splitter loss; *A*, *B*: two coefficients related to length and light overlap factor; N_{dop} : doping concentration; and α_{wg} : optical propagation loss.

¹ Xi Xiao et.al., *Optics Express*, vol. 21, no. 4, pp. 4416-4125, 2013.

Origin of Random Dopant Fluctuations

Plausible Solution?

Use of Electrostatic Doping (ED)

Concept of Electrostatic Doping (ED)

Figure: Concept of ED in metal-semiconductor and metal-insulator-semiconductor junction.

Types of ED in Semiconductor Devices

- Schottky Barrier Based Doping SB-MOSFET, SB-FinFET, CNT
- Work-function Induced Doping CP-PN/PIN diode, CP-BJT, CP-TFET

Bias Induced Doping

Lateral/ vertical PN junction, DG-TFET

Plausible ED in Si-Ph Devices

- Work-function induced doping Utilizes different metal as electrodes.
- Bias induced doping

Use of proper bias voltages.

Design Objectives

• ED assisted optical phase shifter based Push-Pull Mach-Zehnder Modulator (MZM).

Proposed ED Assisted Push-Pull MZM

Proposed Modulator Structure

Carrier Distribution Across ED Assisted Optical Phase Shifter

 $10^{10.1}$

10^{16.1}

 $10^{5.35}$

Mathematical Model of Proposed Modulator

Referring to the device structure, the output electric field of the modulated signal (E_{out}) can be expressed as:

$$E_{out} = \left[\sqrt{\gamma_1 \gamma_2} e^{-j\Delta\phi(v_1)} e^{-\Delta\alpha(v_1)L}\right] e^{-(j\phi_0 + \alpha_0 L)} E_{in} + \left[\sqrt{(1 - \gamma_1)(1 - \gamma_2)} e^{-j\Delta\phi(v_2)} e^{-\Delta\alpha(v_2)L}\right] e^{-(j\phi_0 + \alpha_0 L)} E_{in}$$

For symmetric power splitting and combining i.e. $\gamma_1 = \gamma_2 = \frac{1}{2}$, the above equation reforms to:

$$E_{out} = \frac{E_{in}}{2} \left[e^{-j\Delta\phi(v_1)} e^{-\Delta\alpha(v_1)L} + e^{-j\Delta\phi(v_2)} e^{-\Delta\alpha(v_2)L} \right] e^{-(j\phi_0 + \alpha_0 L)}$$

where, $\Delta \phi(v) = \frac{2\pi L}{\lambda} \Delta n(v)$: bias voltage induced phase change in the optical phase shifter $\lambda = \text{operating wavelength};$ $\phi_0 = \text{phase shift at zero bias voltage};$ $\alpha_0 = \text{loss coefficient at zero bias voltage};$ L = length of the phase shifter.

Simulation Setup for the Proposed Modulator

Used Simulation Platform

Carrier Dynamics: Lumerical Device CT Modal Calculation: Lumerical Mode Solutions Transmission System: Lumerical Interconnect

Simulation Results: Dynamic Performance Metrics

Performance Metrics: Design 1

L = 200 μm 3-dB EO Bandwidth: 28 GHz Maximum operating frequency: 35.2 GHz

Performance Metrics: Design 2

 $L = 400 \ \mu m$

3-dB EO Bandwidth: 22.7 GHz

Maximum operating frequency: 30.3 GHz

Simulation Results: Eye Diagram After Different Fiber Length at 10 Gb/s Data Rate

Fiber Length (km)	Dynamic ER (dB)
B2B	5.93
0.5	5.26
1.0	4.68
5.0	3.64

Transient Performance Metrics

 $L=200\;\mu m$

3-dB EO Bandwidth: 28 GHz

Maximum operating frequency: 35.2 GHz

Simulation Results: BER Performance

Simulation Parameters

Data Rate: 25 Gb/s Input Data: 2¹¹-1, PRBS Thermal Noise: -410 dBm/Hz Dark Current: 5 nA Responsivity: 0.85 A/W

Comparative Performance Study

Reference	Year	Material	L [mm]	ER [dB]	IL [dB]	f _{max} [GHz]	$V_{\pi}L_{\pi}$ [V.cm]
[10]	2019	Si	3	3.6	9.1	32	0.55
[11]	2019	Si-LiNbO ₃	3	5.0	2.5	112	2.20
[19]	2019	AlGaAs	10	3.0	7.5	-	1.00
This work	2020	Si	0.2	4.7	5.1	30.3	0.36-0.74

[10] G. Zhou, L. Zhou, Y. Guo, L. Liu, L. Lu, and J. Chen, "High Efficiency Silicon Mach-Zehnder Modulator With U-shaped PN Junctions," in CLEO: Applications and Technology. Optical Society of America, 2019, pp. JTh2A–42.

- [11] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou et al., "High-performance Hybrid Silicon And Lithium Niobate Mach–Zehnder Modulators For 100 Gbit.s⁻¹ and Beyond," Nature Photonics, vol. 13, no. 5, pp. 359–364, 2019.
- [19] P. Bhasker, J. Norman, J. E. Bowers, and N. Dagli, "Low Voltage, High Optical Power Handling Capable, Bulk Compound Semiconductor Electro-Optic Modulators at 1550 nm," Journal of Lightwave Technology, vol. 33, no. 8, pp. 2308-2314, 2020.

Conclusions

- Push-Pull Mach-Zehnder intensity modulator with electrostatic doping assisted optical phase shifter for photonic integrated circuits is plausible.
- For 200 μ m long proposed MZM, estimated dynamic ER is 4.7 dB with 5.1 dB of IL at 10 Gb/s data rate.
- 3-dB electro-optic bandwidth of MZM with $L = 200 \ \mu m$: 28 GHz.
- Maximum operating frequency of MZM with $L = 200 \ \mu m$: 35.2 GHz.
- Transmission over 5 km SSMF fiber also plausible.
- Power penalty at 25 Gb/s data rate over 1 km and 5 km SSMF: 5 dB and 13 dB, respectively.

References

- 1. M. R. Tan, P. Rosenberg, W. V. Sorin, B. Wang, S. Mathai, G. Panotopoulos, and G. Rankin, "Universal photonic interconnect for data centers," *Journal of Lightwave Technology*, vol. 36, no. 2, pp. 175–180, 2018.
- 2. S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun, K. Wen, A. Rodrigues, and K. Bergman, "Optical interconnects for extreme scale computing systems," *Parallel Computing*, vol. 64, pp. 65–80, 2017.
- 3. J. Witzens, "High-speed silicon photonics modulators," *Proceedings of the IEEE*, vol. 106, no. 12, pp. 2158–2182, Dec 2018.
- D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan et al., "Recent progress in high-speed silicon-based optical modulators," *Proceedings of the IEEE*, vol. 97, no. 7, pp. 1199–1215, 2009.
- 5. S. Pal and S. Gupta, "Junction-less optical phase shifter loaded silicon Mach-Zehnder modulator," *Optics Communications*, vol. 437, pp. 110 120, 2019.
- 6. C. Shin et al., Variation-aware advanced CMOS devices and SRAM. Springer, 2016, vol. 56.
- 7. S. Pal and S. Pal and S. Gupta, "Performance Analysis Of An Electrostatic Doping Assisted Silicon Microring Modulator," *Optics Communications*, vol. 430, pp. 131–138, 2019.

References

- 8. S. Pal and S. Gupta, "Nonlinear Performance And Small Signal Model Of Junction-less Microring Modulator," *Optics Communications*, vol. 459, p. 124984, 2020.
- 9. S. Pal, P. K. Tiwari, and S. Gupta, "A Proposal For An Electrostatic Doping-assisted Electro-absorption Modulator For Intrachip Communication," *IEEE Transactions on Electron Devices*, vol. 66, no. 5, pp. 2269–2275, May 2019.
- 10. G. Zhou, L. Zhou, Y. Guo, L. Liu, L. Lu, and J. Chen, "High Efficiency Silicon Mach-Zehnder Modulator With U-Shaped PN Junctions," in *CLEO: Applications and Technology. Optical Society of America*, 2019, pp. JTh2A–42.
- M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou et al., "High-performance Hybrid Silicon And Lithium Niobate Mach–Zehnder Modulators For 100 Gbit.s⁻¹ and Beyond," *Nature Photonics*, vol. 13, no. 5, pp. 359–364, 2019.
- P. Bhasker, J. Norman, J. E. Bowers, and N. Dagli, "Low Voltage, High Optical Power Handling Capable, Bulk Compound Semiconductor Electro-Optic Modulators at 1550 nm," *Journal of Lightwave Technology*, vol. 33, no. 8, pp. 2308-2314, 2020.

Thank You