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Why Silicon Photonics?

Problems in Present Design

• Fixed bandwidth capability.

• High power consumption.

• Scaling limitation.

Solution(s)

• Replacement of copper based interconnects

by photonic interconnects.

• Integration of electronic and photonic

circuits.
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Why Silicon Photonics?

• Stable and well understood material.

• Mature fabrication technology.

• High optical confinement and refractive index.

• Optically transparent at 1.3 μm to1.5 μm.

• Electro-refraction and electro-absorption: dual method for optical modulation.

• Offers electronic and optical integration.

Advantages of Silicon 

• Power Requirement1: Inter-chip: ≤100 fJ/bit; Intra-chip: ≤ 50-200 fJ/bit.

• Photodetectors integrated with transistors.

• Total time delay: 180-270 ps.

• Total power consumption: 18-20 mW.

Requirements of Silicon Based Interconnects 

1. D. Miller, Proc. IEEE, vol. 97, no. 7, pp. 1166-85, 2009.



Optical Modulators in Photonic Integrated Circuits

• Phase shifter introduces additional phase shift in guided-light.

• Additional phase shift: 

• Dn: Electro-optic effect (via free carrier plasma dispersion effect) or thermo-optic effect.

• Most common structure: PN/PIN diode or MOS Capacitor in a rib waveguide.

Optical Phase Shifters and Modulators

Different Modulator Structures
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Different Optical Modulator Structures

Interleaved PN Junction

Source: Opt. Express 20, 26411-26423 (2012)



Random Dopant Fluctuations

Insertion loss in MZM as a function of doping1: IL 2
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where sp : splitter loss; A, B: two coefficients related to length and light overlap factor; 

Ndop: doping concentration; and wg: optical propagation loss.

1 Xi Xiao et.al., Optics Express, vol. 21, no. 4, pp. 4416-4125, 2013.



Origin of Random Dopant Fluctuations

Plausible Solution?

Use of Electrostatic Doping (ED) 



Concept of Electrostatic Doping (ED)

Types of ED in Semiconductor Devices

• Schottky Barrier Based Doping

SB-MOSFET, SB-FinFET, CNT

• Work-function Induced Doping

CP-PN/PIN diode, CP-BJT, CP-TFET

• Bias Induced Doping

Lateral/ vertical PN junction, DG-TFET

Plausible ED in Si-Ph Devices

• Work-function induced doping

Utilizes different metal as electrodes.

• Bias induced doping

Use of proper bias voltages.

Design Objectives

• ED assisted optical phase shifter based Push-

Pull Mach-Zehnder Modulator (MZM).



Proposed ED Assisted Push-Pull MZM

Carrier Distribution Across ED 

Assisted Optical Phase Shifter

Proposed Modulator Structure



Mathematical Model of Proposed Modulator

Referring to the device structure, the output electric field of the modulated signal (Eout) can be 

expressed as:

              0 0 0 01 1 2 2

1 2 1 21 1
j L j Lj v v L j v v L

out in inE e e e E e e e E
      

   
    D D  D D     

   

For symmetric power splitting and combining i.e. γ1 = γ2 = ½, the above equation reforms to:   
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where,    
2

 : bias voltage induced phase change in the optical phase shifter
L
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λ = operating wavelength;     

ϕ0 =  phase shift at zero bias voltage;

α0 =  loss coefficient at zero bias voltage; 

L = length of the phase shifter. 



Simulation Setup for the Proposed Modulator

Carrier Dynamics: Lumerical Device CT 

Modal Calculation: Lumerical Mode Solutions

Transmission System: Lumerical Interconnect

Used Simulation Platform



Simulation Results: Dynamic Performance Metrics

L = 200 µm

3-dB EO Bandwidth: 28 GHz

Maximum operating frequency: 35.2 GHz

Performance Metrics: Design 1

L = 400 µm

3-dB EO Bandwidth: 22.7 GHz

Maximum operating frequency: 30.3 GHz

Performance Metrics: Design 2



Simulation Results: Eye Diagram After Different 
Fiber Length at 10 Gb/s Data Rate

Fiber Length (km) Dynamic ER (dB)

B2B 5.93

0.5 5.26

1.0 4.68

5.0 3.64

Transient Performance Metrics

L = 200 µm

3-dB EO Bandwidth: 28 GHz

Maximum operating frequency: 35.2 GHz



Simulation Results: BER Performance

Simulation Parameters

Data Rate: 25 Gb/s

Input Data: 211-1, PRBS

Thermal Noise: -410 dBm/Hz

Dark Current: 5 nA

Responsivity: 0.85 A/W



Comparative Performance Study
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Conclusions

• Push-Pull Mach-Zehnder intensity modulator with electrostatic doping assisted optical 

phase shifter for photonic integrated circuits is plausible.

• For 200 µm long proposed MZM, estimated dynamic ER is 4.7 dB with 5.1 dB of IL at 

10 Gb/s data rate.

• 3-dB electro-optic bandwidth of MZM with L = 200 µm: 28 GHz.

• Maximum operating frequency of MZM with L = 200 µm: 35.2 GHz.

• Transmission over 5 km SSMF fiber also plausible.

• Power penalty at 25 Gb/s data rate over 1 km and  5 km SSMF: 5 dB and 13 dB, 

respectively.
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