Asymmetric Single Split Resonator for RFID Applications

Anila P V* ^(1,2), Manoj M ⁽¹⁾, Remsha M ⁽¹⁾, Shameena V A ⁽¹⁾ and P Mohanan ⁽¹⁾
(1) Cochin University of Science and Technology, Cochin, Kerala, India-22
(2) Mar Athanasius College of Engineering, Kothamangalam, Kerala, India-66
*anilapv@gmail.com

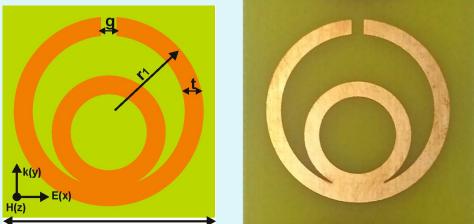
Outline

- Introduction
- Asymmetric Single Split Resonator(ASSR) structure
- Methodology
- Results and Discussion
- Conclusions
- References

1. Introduction

• Metamaterial:-

- Applications of metamaterials include antenna miniaturization, bandwidth enhancement, directivity/gain enhancement, spurious radiation suppression, superdirectivity etc
- SRR is having a symmetric geometry which will reduce the nonlinear behavior



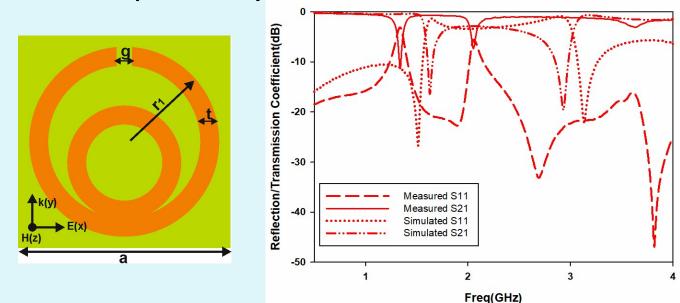
1. Introduction

- For filter and RFID applications, it needs more energy density which can be attained by increasing the nonlinear behaviour
- Fedotov et al [8] proposed that the resonator obtained by crossing the symmetry leads to extremely sharp resonance and concentrating local fields in a small volume supporting trapped modes.

2. Asymmetric Single Split Resonator (ASSR)

Geometry is by offsetting the inner ring of double ring SRR on to one side
A unit cell of 30 mm x 30 mm dimension is simulated for infinite periodic arrangement of ASSR

Figure 1. (a) Structure of a unit cell with its dimensions and field vectors (r_1 =12 mm, g=2 mm, t=2 mm, outer radius of the inner ring is 7 mm and center to center distance= 3.15 mm, a=30 mm) in FR4 substrate (b) Fabricated unit cell on FR4 substrate



3.Methodology

- Infinite periodic arrangement and unit cell simulation by CST Microwave Studio
- Experimental analysis by PNA E8362 vector network analyzer
- Based on transmission and reflection coefficients using microstrip fixture method[9]

A uniform plane wave is made incident for parallel polarization that is propagation along Y axis where electric field and magnetic fields are oriented along X and Z axes respectively

Figure 2. (a) Unit cell filed orientations for simulation (b) simulated and measured reflection and transmission coefficients of ASSR

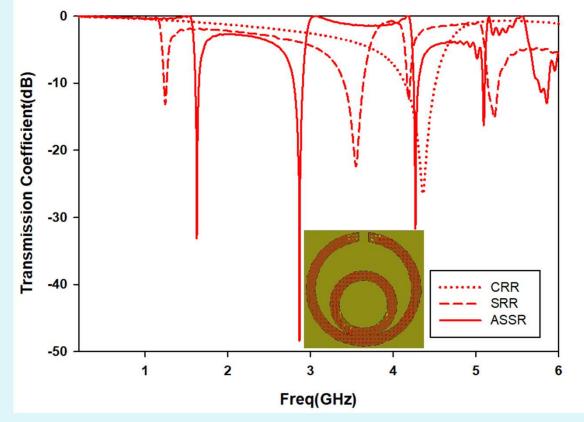
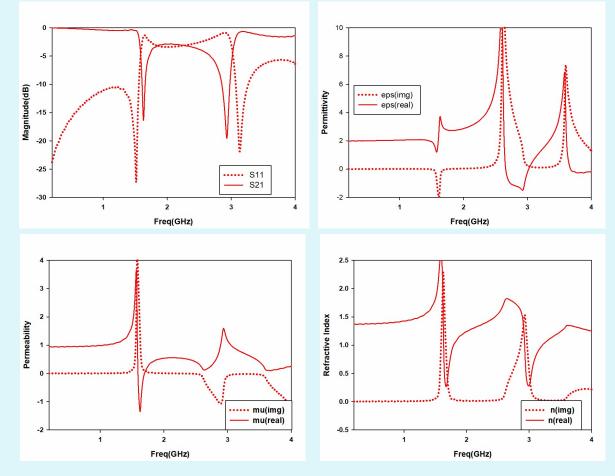
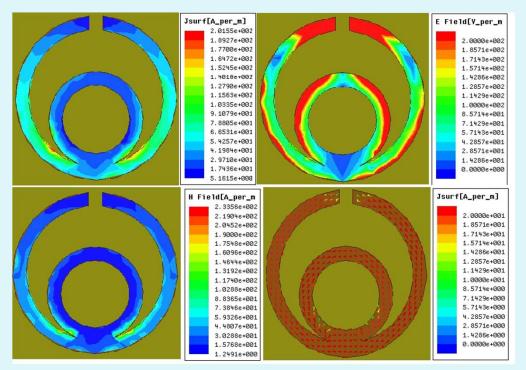



Figure 3. Simulated transmission coefficients of (a)CRR (b)SRR (c)ASSR

- Magnetic resonance of the structure is identified by comparing it with a closed ring resonator (CRR) of same dimensions
- The fundamental resonance of CRR is found to be at 4.365GHz whereas the ASSR shows the first resonance which is the magnetic resonance of the resonator at 1.63GHz
- But an SRR of same outer diameter and gap width and excited with same boundary conditions exhibits a lower resonance of 1.23GHz since the capacitance effect in SRR is more as compared to an ASSR


Figure 4. (a) Transmission and reflection coefficients (b) Permittivity (c) Permeability (d) Refractive Index

- The anti-parallel loop currents through the inner and outer rings indicate the existence of negative permeability also evident from Figure 4(c)
- The second resonance of ASSR is showing negative permittivity as seen in Figure4(b)
- Both resonances are brought closer by introducing asymmetry

- The electric field is dominant at the vicinity of splits/gap between the rings
- It seems to be three times as that of SRR

Figure 5. Magnitudes of Current, Electric field, Magnetic field and Current distribution with its phase

URSI-GASS 2020Rome, Italy, 29 August - 5 September 2020

- The asymmetric distribution of current increases the energy density within the volume.
- Hence the field confinement is more for ASSR as compared to an SRR of same dimension.
- Thus, it may be well suited for filter and RFID applications rather than SRR.

5. Conclusions

- A new metamaterial to achieve the negative permeability is proposed in this paper
- The ASSR structure is a modified form of basic split ring resonator and is asymmetric
- It exhibits high field confinement as compared to SRR, so it can be used for filter and RFID applications
- The paper presents the constitutive parameters of ASSR for parallel polarization with supporting simulation and measurement results
- It can be used for single negative and/or double negative metamaterial applications with different polarization of incident wave

6. References

- 1. Pendry J. B., A.J. Robbins, D.J Stewart, and W.J Stewart. Magnetism from conductors and enhanced nonlinear phenomena. *IEEE Trans. on Microwave Theory and Techniques*, 1999;47:2075-2084.
- 2. Smith D.R, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser and S. Schultz. Composite Medium with Simultaneously Negative Permeability and Permittivity. *Physical Review Letters, 2000;* 84:4184–4187.
- 3. Baena J.D, Jordi Bonache, Ferran Martín, Ricardo Marqués Sillero, Txema Lopeteg, Miguel A. G. Laso, Maria Flores Portillo, and Mario Sorolla. Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines. *IEEE Trans on Microwave Theory and Techniques*, 2005; 53:1451-1461.
- 4. Chen H. S., L. X. Ran, J. T. Huangfu, X. M. Zhang, and K. S. Chen. Magnetic Properties of S-Shaped Split-Ring Resonators. *Progress in Electromagnetics Research*.2005; 51: 231–247.
- 5. Jae-Gon Lee and Jeong-Hae Lee.Suppression of Spurious Radiations of Patch Antennas Using Split-Ring Resonators (SRRs). *Microwave and Optical Technology Letters*. 2006; 48: 283-287.
- 6. Wang B, Jiangfeng Zhou, Thomas Koschny, and Costas M. Soukoulis. Nonlinear properties of split-ring resonators. *Optics Express*. 2008;16: 16058-16063.
- 7. Saber Dakhli, Hatem Rmili, Kouroch Mahdjoubi, Jean-Marie Floc'h, and Fethi Choubani. A Family of Directive Metamaterial-Inspired Antennas. *Progress in Electromagnetics Research C*.2014;49:105–113.
- 8. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, and N.I. Zheludev, Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry, *Phys. Rev. Lett.* 2007; 99:147401.
- 9. Yousefi, L, Muhammed Said Boybay and Omar M. Ramahi.Characterization of Metamaterials Using a Strip Line Fixture.*IEEE Trans on Antennas and Propagation*.2011;59:1245-1253.

Thank you

URSI-GASS 2020Rome, Italy, 29 August - 5 September 2020

