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Figure 1: Diffraction of waves from a point source over an impedance wedge

1 Statement of the problem

In the exterior Ω of a wedge with the surface S consisting of two faces S+ and

S− (Fig. 1) the acoustic wave field u (Green’s function) satisfies the Helmholtz

equation

(△+ k2)u(X,Y, Z) = −δ(X − x0)δ(Y − y0)δ(Z) , (1)

where the point source is located at (x0, y0, 0).

The impedance boundary conditions on the wedge’s faces S±(
±1

r

∂u

∂φ
− ikη±u

)∣∣∣∣∣
φ=±Φ

= 0 , (2)

where k > 0, π/2 < Φ ≤ π, η± are the surface impedances.

Meixner’s condition, as r → 0,

u(r, φ, z) = C +O(rδ) , δ > 0 . (3)

Radiation condition at infinity

∫
SR

∣∣∣∣∣∂u∂r − iku

∣∣∣∣∣
2

ds → 0, as r = R → ∞ , (4)
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Figure 2: The contours of integration for the Weyl integrals for the wave field from the point

source. The branch cuts for θ+(β) connect the points arcsin η+ + πn and − arcsin η+ + πn

with n = 0,±1, . . . correspondingly.

1.1 Integral representations of the wave field

Weyl integral representation. We make use of the integral representation for the

incident field from an acoustic point source in 3D space located at M0 = (x0, y0, 0)

u0(M) =
ik

8π2

∫
Γπ/2

dβ
∫
γψ−π

dα sin β eik[z cosβ+sinβ(r0 cos(α−φ0)−r cos(α−φ))] (5)

and also u0(M) =
eikR0

4πR0

, where M = (X,Y, Z) (or (r, φ, z)), R0 = |MM0|, the contours

of integration in (5) are shown in Fig. 2, (0 ≤ ψ < 2π).2)

The total field from the point source over a wedge is sought in an analogous form

u(M) =
ik

8π2

∫
Γ′
π/2

dβ
∫
γ(φ0)

dα sin β eik[z cosβ+sinβr0 cos(α−φ0)] U(r, φ;α, β) (6)

with yet unknown U(r, φ;α, β) and with the contours of integration shown in Fig.

2) The contour Γπ/2 coincides with Γ′
π/2 in Fig 2., however, the integrand in (5) does not have any branching

points.
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2, Γ′
π/2 = (i∞, 0+] ∪ [0+, π − 0] ∪ [π − 0, π − 0− i∞).

U(r, φ;α, β) =
1

2πi

∫
γ

ds e−ikr sinβ cos s f(s+ φ;α, β) , (7)

where the double-loop Sommerfeld contour of integration γ is shown in Fig. 1.1

together with the steepest descent paths (SDP), the function f is specified by the

expressions

f(s;α, β) =
µ cosµα

sinµs− sinµα

Ψ(s; β)

Ψ(α; β)
, µ =

π

2Φ

and

Ψ(s; β) =

ψΦ(s−Φ+π/2−ϑ−(β))ψΦ(s−Φ−π/2+ϑ−(β))ψΦ(s+Φ+π/2−ϑ+(β))ψΦ(s+Φ−π/2+ϑ+(β)).

The meromorphic function ψΦ(·) is the Malyuzhinets function (see [?], Sect. 6.2).

The Malyuzhinets function is a meromorphic solution of the functional difference

equation

ψΦ(z + 2Φ)

ψΦ(z − 2Φ)
= cot

(
z

2
+
π

4

)
and in the strip |ℜ(z)| < π/2 + 2Φ has an integral representation

ψΦ(z) = exp

−1

2

∞∫
0

cosh(zζ)− 1

ζ cosh(πζ/2) sinh(2Φζ)
dζ

 .
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Figure 3: The plane of the complex variable s with the Sommerfeld double loops γ and the

steepest descent paths γ±π := SDP (±π)

2 The far-field asymptotics: the point source is not close

to the wedge’s faces

2.1 The incident field from the source, the reflected waves

u0(M) =
eikR0

4πR0

(8)

as |φ−φ0| < π, otherwise, there is no contribution from the saddle point, u0(M) = 0.

The reflected waves

ur±(M) = R±(α±
0 , β

±
0 )

eikψ
r±

4πψr±
(9)

as | ± 2Φ−φ−φ0| < π, otherwise, ur±(M) = 0. The reflected waves can be interpreted

as the waves emanated by the imaginary sources which are the mirror images of

the real source at (x0, y0, 0) w.r.t. the wedge’s faces S±, R
±(α±

0 , β
±
0 ) are the reflection

coefficients, see Appendix. The eikonals of these waves are ψr± correspodingly.
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Figure 4: The edge wave and Keller’s cone

2.2 The space wave, excited by the incident space wave, from the

edge

Applying the formula for the leading term in the 3D steepest descent technique

ue(M) =
eiπ/4

4π

eik
√
z2+(r+r0)2√

(z2 + (r + r0)2)


√
z2 + (r + r0)2

2πkrr0


1/2

D(φ, φ0, β0)
(
1 +O

(
1

k

))
, (10)

where D(φ, φ0, β0) = f(−π + φ;φ0, β0) − f(π + φ;φ0, β0) is the diffraction coefficient of

the edge wave.
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Figure 5: Surface waves from the edge.

2.3 Surface waves propagating from the edge

usw± (M) = sin β±
0 C

±(φ0, β
±
0 )

e−ikr sin(Φ∓φ) η±

4π
×

exp(ik[z cos β±
0 + sin β±

0 r0 cos(α− φ0) +
√
sin2 β±

0 − η2± r cos(Φ∓ φ)] ){
r20

sin2 β±
0

+ r0r cos[Φ∓φ]
sin2 β±

0 −η2±

sinβ±
0√

sin2 β±
0 −η2±

}1/2

(
1 +O

(
1

k

))
. (11)

The expressions in (11) are really present in the asymptotics if the obsrvation

point is close to the wedge’s face φ = ±Φ correspondingly or, more exactly, as

0 < Φ∓ φ < −gd(Imϑ±(β±
0 )).
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Figure 6: Reflection and transmission of the primary surface wave at the edge, h = r cos[Φ−φ],

h0 = r0 cos[Φ− φ0]

3 Reflection and transmission of the primary surface

wave at the edge of the wedge

The primary surface wave propagates to the edge and gives rise to the edge wave

and to the reflected and transmitted surface wave. In the leading approximation,

for the reflected surface wave we find

uswr (M) = rϑ+(τ+)×

kei3π/4

2
√
2π

eik[r0 sin(φ0−Φ)η++r sin(φ−Φ)η+]√
(1− η2+)kρ

{
1− η2+

1 + z2/ρ2

}3/4

eik
√

(1−η2+)(z2+ρ2)
(
1 +O

(
1

k

))
. (12)

In a similar manner we deal with the transmitted surface wave. The Snel’s type

law of refraction of the primary surface wave across the edge of two impedance

halfplanes reads √
1− η2+ sinκ+ =

√
1− η2− sinκ− .

The leading term of the transmitted surface wave takes the form

uswt (M) = rϑ−(τ−)
kei3π/4

2
√
2π

eik[r0 sin(φ0−Φ)η−+r sin(φ−Φ)η−]

√
kρ

×
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 γ+(1− η2+)τ−

[
√
1− η2+ − τ 2−]3

+
γ−(1− η2−)τ−

[
√
1− η2− − τ 2−]3


−1/2

eik[zτ−+ργ+
√

1−η2+−τ2−+ργ−
√

1−η2−−τ2−]
(
1 +O

(
1

k

))
.

(13)
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Figure 7: The edge wave generated by the primary surface wave

4 The edge wave generated by the primary surface wave

interacting with the edge

The expression for this wave is also obtained by means of the asymptotic evaluation

of the integral that originates from the residue of f(s+ π+φ;α, β)− f(s− π+φ;α, β)

of the integrand. We find

It is worth noticing the existence of the critical angle κ∗0 for edge wave which

corresponds to κd = π/2,

κ∗0 = arctan

(
1

|η+|

)
.

For this angle the edge wave collapses to be concentrated near the edge. The

point τe goes to the branch points of
√
1− τ 2 and disappears through the cut.

The asymptotics of the integral, in this case, requires a special study. For the

electromagnetic case some additional details can be found in [?].

The leading term of the asymptotics reads (τe = cos βe)

uswe (M) =
d(τe, 0;φ)

4π

 r2

sin2 βe
+ rr0 cos[Φ− φ0]

(1− η2+) sin βe√
sin2 βe − τ 2e


−1/2

e−ikr0 sin(Φ−φ0)η+ eik[z cosβe+sinβer+r0 cos(Φ−φ0)
√

sin2 βe−η2+]
(
1 +O

(
1

k

))
.

(14)
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5 Conclusion

In this paper, we applied recently developed results [1] (Chapter 3), [2],[3], ob-

tained in the case of electromagnetic problem, to the acoustic one. A principal

difference of the acoustic case is that, contrary to the electromagnetic problem

which requires solution of an integral equation, it is explicitly solvable. The corre-

sponding non-uniform asymptotic results are written in terms of the Malyuzhinets’

and elementary functions. The Weyl integral representation played a crucial role,

whereas the integrand was found explicitly in terms of the Malyuzhinets’ solution

of an auxiliary problem.

We could obtain asymptotic components of the total field as k → ∞. In this way, as

a result of asymptotic evaluation of the integrals we also clarified physical meaning

of the wave components computed. In particular, the laws of the Geometrical

Theory of Diffraction describing the interaction of the primary surface wave with

the edge were discussed.

One of the further prospects is in study of possible excitation of the edge waves,

i.e. the waves whose energy is concentrated near the edge. Such localized waves,

together with the other waves, might actually propagate along the edge in the

opposite directions from the source located near the edge. To our mind, existence

of such phenomenon can be expected, for instance, provided the impedances of

the faces coincide and the wedge’s opening 2Φ is less than π. Remark that the

existence and excitation of the edge waves in elasticity is also of great practical

importance.
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