Meter to Decameter Wave Spectral Radio Heliograph

Linjie Chen, Yihua Yan, Wei Wang, Fei Liu, Lihong Geng

Mingantu Observation Station National Astronomical Observatories, CAS

Outline

- 1. Scientific Objectives
- **2.Present Instruments**
- 3.Specifications
- 4. System Design
- 5. Key technologies
- 6.Summaries

Scientific Objectives for the Solar-interplanetary subsystem of Meridian II project

With the terrestrial instruments, detect the solar intense activities, including the solar flare, CME, interplanetary shock wave, non-thermal particles, solar winds, etc. in the space between the solar surface to the Earth (0-215 R_{\odot}); study the disturbance, coupling mechanism, energy transfer mechanism of the interplanetary and terrestrial space impacted by the solar activities.

Meter-Decameter Wave Spectral Radio Heliograph

Project Significance

- Meter-Decameter Wave Spectral Radio Heliograph is an important part of the Solar-interplanetary sub-system of Meridian II project ;
- Combined with MUSER, it can achieve a solar radio spectral imaging system at the frequency range from centimeter to decameter.
- The system will be an solar radio detecting system with the capability of high-temporal, high-spectral and high-spatial resolutions in the widest frequency band. It can do the full monitoring for the disturbance source in interplanetary space.

Scientific Objectives

- So far, it is a big scientific gap in the world to dedicatedly observe solar radio bursts with high-performance images in the frequency range of meter and decameter wavelengths.
- This frequency is just covered the important space of CMEs and non-thermal particles' propagation, acceleration and evolutions, which strongly disturbs and impacts on the interplanetary and terrestrial space, and may trigger the disastrous space weather events.
- Therefore, it is most necessary to build a new solar radio telescope operating in the frequency of meter and decameter wavelength and with high temporal, spectral, and spatial resolutions.

Solar Radio Emission

Solar and Galactic radio emission flux

Present solar radio heliograph

Instrument	Frequency	Time	Frequency	Polarizati	Time
		resolution	resolution	on	
MUSER	0.4-2.0GHz	25ms	25MHz	R,L	2016
	2.0-15.0GHz	206ms	25MHz		
NoRH	17GHz	100ms	33.6MHz	R,L	1984
	34GHz	100ms			
SSRT	5.70GHz	100ms	-	-	1996
					Upgrade
NRH	150-450MHz	100ms	10 freqs	-	1987
			0.7MHz		Upgrade
GRAPH	40-150MHz	256ms	1MHz	-	1997
			1 freq		

Present solar radio imaging telescope

MUSER

- 1. Ultra-wide Band : 0.40-15.0GHz
- 2. High resolution : Spatial, 1.4-51.6", temporal, 25-200ms, frequency, 25MHz.
- **3. High-speed spectral imaging:** 584, imaging with ~200ms
- 4. Dual-circular polarization: L& R

Present solar radio imaging telescope

NoRH

SSRT

2020/7/5

Present solar radio imaging telescope

NRH

Gauribidanur Radio Heliograph

2020/7/5

Main Specification

- Frequency: 30MHz-240MHz
- Antenna : 100 LPDA antenna
- Longest Baseline: 3000m
- Frequency Resolution: 1MHz~5MHz
- Temporal Resolution: 100ms
- Spatial Resolution: 1.7' @240MHz-14.0' @30MHz
- Polarization: $I \setminus Q \setminus U \setminus V$

Frequency: 30MHz-240MHz

- Solar radio emissions below150MHz locate the area from1 to 5 Rs, where the solar events including CME、non-thermal particle and solar wind are produced and accelerated, it is crucial to systematically monitor this area.
- Covering the full frequency band that can be observed on the ground with the Daocheng Circular Array together, the overlap frequency can be used to mutually testified

Antenna

- LPDA, Most used and mature;
- Based on the simulations, 100 antennas are enough to get good images;
- Simple mechanism, cheap,.

• For crossed linearly polarized feeds

$$v_{pp} = \frac{1}{2}g_{ip}g_{kp}^{*}(I + Q \cos 2\chi + U \sin 2\chi),$$

 $v_{pq} = \frac{1}{2}g_{ip}g_{kq}^{*}((d_{ip} - d_{kq}^{*})I - Q \sin 2\chi + U \cos 2\chi + jV),$
 $v_{qp} = \frac{1}{2}g_{iq}g_{kp}^{*}((d_{kp}^{*} - d_{iq})I - Q \sin 2\chi + U \cos 2\chi - jV),$
 $v_{qq} = \frac{1}{2}g_{iq}g_{kq}^{*}(I - Q \cos 2\chi - U \sin 2\chi),$

- 4 cross-correlations can be used to measure the antenna polarization performance;
- Decrease the crosstalk requirement of antenna polarization;
- For the signal with polarization unknown, 4 cross-correlations can used to measure the full stokes parameter, I, Q, U, V;

2020/7/5

System Composition

- 100 LPDA;
- Calibration unit (124 LPDA), also used as spectrometer;
- 124 LPDA, beamforming.

Array Configuration

• Design principle: UV coverage, Beam Characteristic, Image quality, Engineering Implementation;

URSI GASS 2020

Array Design

• Fully take advance of the present location and condition .

Antenna Design

- Antenna: LPDA
- Frequency: 30-240MHz
- Polarization: Dual-linear
- Gain: ≥5dB (50MHz以上)
- VSWR: ≤2.5
- Right ascension : -95° \sim +95°
- Decline: -30 $^{\circ}$ \sim +30 $^{\circ}$

 $L \times W \times H=3.0m \times 3.0m \times 3.0m$, much smaller than the half-wavelength antenna

Antenna receiver design

- Frequency: 30MHz ~ 240MHz
- LNA NF: < 1.5dB
- IF band: ~100MHz
- Isolation: ≥70dB
- Flatness : ±1.5dB
- Attenuator: 30dB, adjustable

Digital Receiver Design

- AD Acquisition : AD, BF filter, Fringe stop,
 2bit quantization,
 Delay compensation.
 - Synchronization
 Module: Sampling
 clock.
- Correlator module: 4 correlator, Cos output, Sin output.

Monitoring system

Data Processing Unit Design

- 1. Storage server
- 2. Monitor
- 3. HP computing server.
- 4. Harddisk array
- 5. Tape library

Calibration Unit Design

- 124 LPDA, 16 groups;
- 7 antenna summing, improve gain;
- Without tracking.

MUSER OS

d-10-145-200-28:bin yyh\$./museros Environment file: /Users/yyh/museros/resource/xml/system.xml

Version 1.0.0-REL (r1) Compiled on: Wed 2016/2/8 12:39:00 UTC Current IPython Version: 4

Muser <1>:

Observation Mode

Order	Observation Mode	Description	Temporal	Detection Area	Frequency
1	Normal Obs mode	Full frequency band, full time	second	$0\text{-}5\mathrm{R}_{\odot}$	30MHz-240MHz
2	Frequency Selection mode	Frequency selection	second	$0\text{-}5\mathrm{R}_{\odot}$	30MHz-240MHz Certain Frequency
3	Night Obs mode	Observe radio source for calibration and difference sciences	second	Radio sources	30MHz-240MHz

Data Archive

Level	Data name	Description	Format	Time resolution	Data Volume (MB)	Online or not?	Produced by data center?
0	Image raw data	Raw output, visibility, time, spectrum	Self- define	1 min	2TB	No	No
0	Spectral raw data	Raw output, time, spectrum	Self- define	Each min	1GB	No	No
1	Standard image format	Normal data format, time、 visibility	FITS	5 min	1GB	No	No
2	Image production	Customer data, time、solar radio image	FITS	5 min	3.6GB	Yes	No
2	Spectral production	Customer data、 time、spectrum	FITS	Each min	1GB	Yes	否

Thanks!