ERALD **ElectroMagnetic imaging for a novel** genERation of medicAL Devices

Performance assessment of microwave tomography and radar imaging using an anthropomorphic brain phantom Olympia Karadima, Navid Ghavami, Ioannis Sotiriou, Panos Kosmas King's College London, London, UK

Funded by:

URSI GASS 2020

University of London

This project has received funding from the European 2020 Union's Horizon innovation research and programme under grant agreement No 764479

Motivation

Current imaging techniques (MRI, CT scans)

- Expensive
- Time consuming

Microwave imaging (MWI)

- Quick, safe and bed-side diagnosis
- User friendly design
- Cost effective

Applications in medical imaging devices

- Breast cancer detection
- Differentiation and detection of brain stroke

Microwave tomography

Estimation of the spatial distribution of dielectric properties in a region of interest by solving an electromagnetic inverse scattering problem

Dadar ir

Finds the solution to a simpler problem of discovering the scattering map based on contrast amongst the dielectric properties

KING'S College LONDON University of London

URSI GASS 2020

Radar imaging

Outline

- Background and problem statement
- Related work
- Methodology
- Experimental configuration
- Results
- Conclusions and future work

Background and problem statement

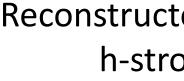
Strong and robust imaging algorithms		
 DBIM-TwIST tomography algorithm^[1] Permits accurate reconstruction of phantom's internal dielectric properties 	IncreaSecure	
 Can distinguish between h- and i-strokes 	Ar	
Huygens based radar algorithm ^[2]	A	
 Does not require matrix generation and inversion 	Experi	
 Its application is not limited to certain known geometries 		
 It has shown promising results in previous research on breast and skin cancer detection 	• Multi-l	

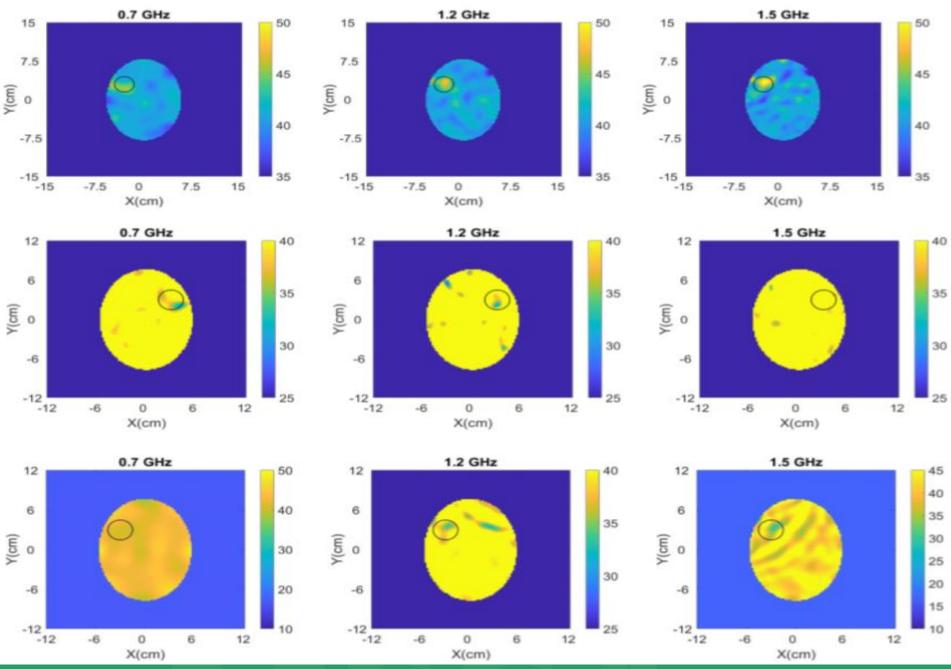
URSI GASS 2020

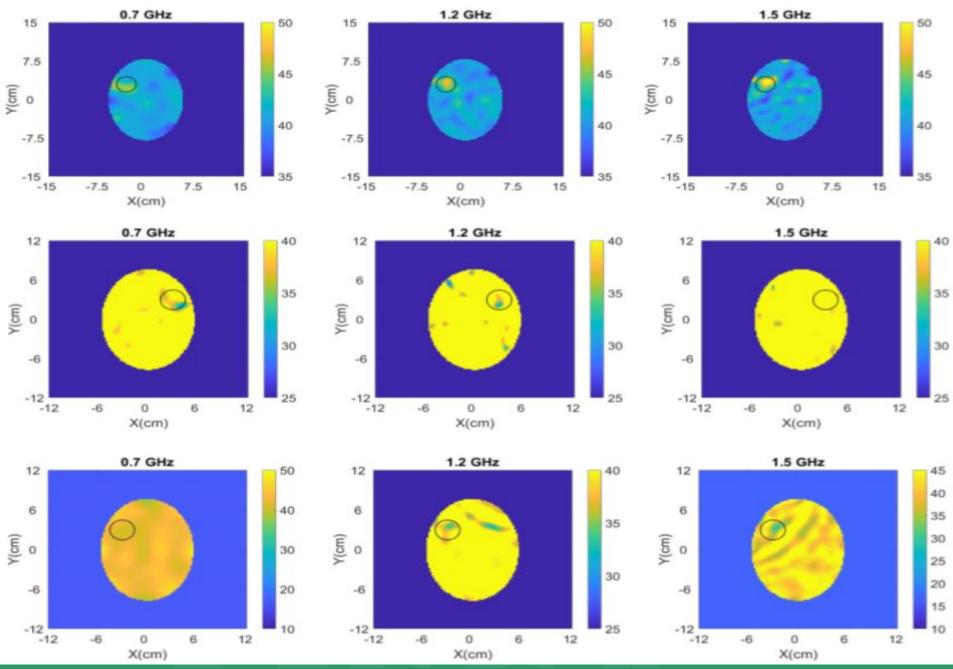
vare characteristics

- ase the penetration depth into the lossy tissues
- re adequate spatial resolution images
- Intennas operating below 2 GHz
- iment characteristics
- -layer anthropomorphic model of the head

Related work


Multiple prototypes for h-stroke detection exist, but no MWT prototypes for differentiation between h-stroke and i-stroke in a wide frequency range.^[1-7] Challenges:


DBIM-TwIST^[1]


- High heterogeneity of the human body^[8]
- Non-linear solution^[9]
- Non-unique solution^[9]

Optimal characteristics for a MWT prototype:

- Number of antennas: 24^[10]
- Optimal frequency range: 0.6–1.5 GHz^[11]
- Matching medium permittivity:10-40^[11]

URSI GASS 2020

Reconstructed real part of the complex permittivity for h-stroke, 25% i-stroke and 50% i-stroke^[12]

DBIM-TwIST algorithm

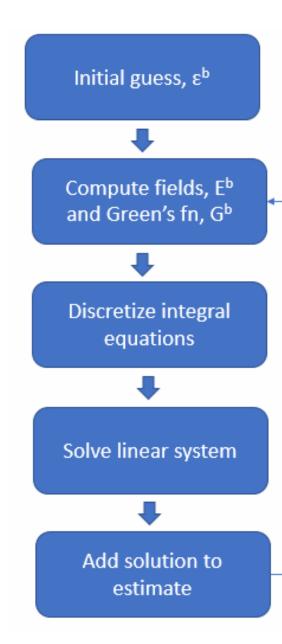
DBIM iterative approach

1. Approximating the non-linear integral equation via the Born approximation at each iteration

$$egin{aligned} m{E}_{m{s}}(m{r}_{m{n}},m{r}_{m{m}}) &= m{E}(m{r}_{m{n}},m{r}_{m{m}}) - m{E}_{m{b}}(m{r}_{m{n}},m{r}_{m{m}}) \ &= \omega^2 \mu \int_V m{G}_{m{b}}(m{r}_{m{n}},m{r}) m{E}_{m{b}}(m{r},m{r}_{m{m}}) (m{\epsilon}(m{r}) - m{\epsilon}_{m{b}}(m{r}) dm{r}) \ &= \omega^2 \mu \int_V m{G}_{m{b}}(m{r}_{m{n}},m{r}) m{E}_{m{b}}(m{r},m{r}_{m{m}}) (m{\epsilon}(m{r}) - m{\epsilon}_{m{b}}(m{r}) dm{r}) \ &= \omega^2 \mu \int_V m{G}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) (m{\epsilon}(m{r}) - m{\epsilon}_{m{b}}(m{r}) dm{r}) \ &= \omega^2 \mu \int_V m{G}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) \ &= \omega^2 \mu \int_V m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r},m{r}) m{E}_{m{b}}(m{r}) m{E}_{$$

2. Estimated Green's function for the background medium

$$G_b(\boldsymbol{r}_n, \boldsymbol{r}) = \frac{i}{\omega\mu} E_b(\boldsymbol{r}, \boldsymbol{r}_n)$$


3. Discretize integral equation

$$E_{s}(\boldsymbol{r}_{n},\boldsymbol{r}_{m}) \approx i\omega \int_{V} E_{b}(\boldsymbol{r},\boldsymbol{r}_{m}) E_{b}(\boldsymbol{r},\boldsymbol{r}_{n}) O(\boldsymbol{r}) d\boldsymbol{r}$$

$$\downarrow$$

$$\boldsymbol{b}(\omega) = \boldsymbol{A}(\omega)\boldsymbol{o}.$$

4. Solve the non-linear problem iteratively and update background properties

$$\epsilon_{bi+1} = \epsilon_{bi} + \hat{\boldsymbol{o}}_{i+1}$$

URSI GASS 2020

DBIM-TwIST algorithm

Solves the linear problem at each DBIM iteration as a linear inverse problem.

Splitting of the matrix in a two step iterative equation:

$$egin{aligned} x_{t+1} &= (1-lpha) x_{t-1} + (lpha - eta) x_t + eta \Gamma_\lambda(x_t) \ & \Gamma_\lambda(x) &= \Psi_\lambda(x + A^T(y - Ax)) \end{aligned}$$

Next solution depends the current solution as well as previous solution.

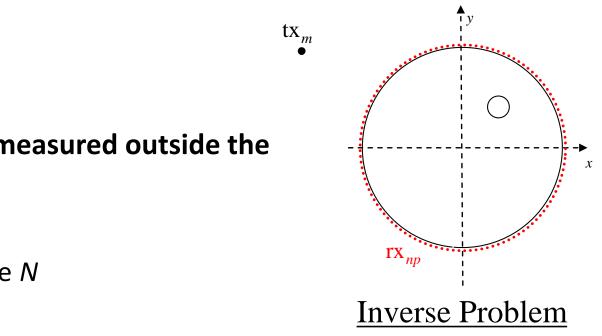
Huygens based radar algorithm

Let us consider an object in free space:

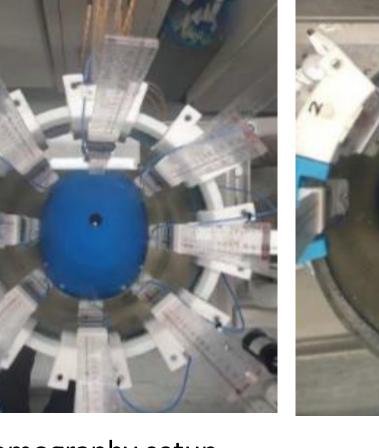
- the external cylinder is characterized by a low dielectric constant
- the internal cylinder is characterized by a higher dielectric constant

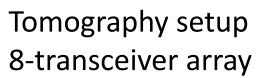
Goal: Identifying the presence and location of the inclusion by using only the field E_{nm} measured outside the cylinder

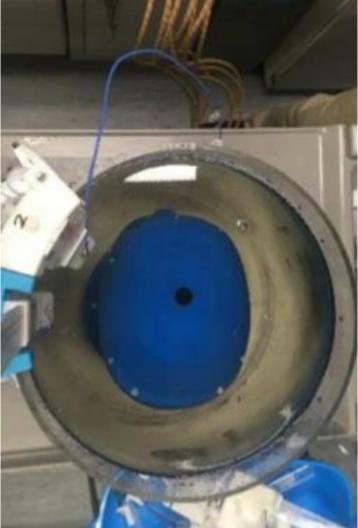
The field inside the cylinder is reconstructed using superimposition of the fields radiated by the *N* observation points:


$$E_{\rm HP}(\rho, m, f) = \sum_{n=1}^{N} E_{nm}(f)G(k|\rho_n - \rho|)$$

Resulting normalized intensity calculated through summing contributions from all receiving positions (*m*) and all frequency points (*l*):

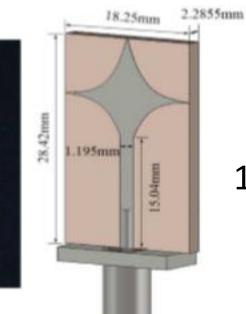

$$I_{\rm HP}(\rho) = \sum_{m=1}^{M} \left[\sum_{l=1}^{L} E_{\rm HP}(\rho, m, f_l) \right]^2$$

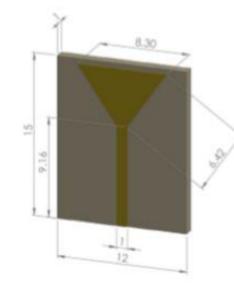




Experimental configuration

Radar setup 2 rotating antennas acting as Tx and Rx





URSI GASS 2020

Spear antenna 18.25 mm by 28.42 mm FR-4



Triangular antenna 12 mm by 15 mm FR-4

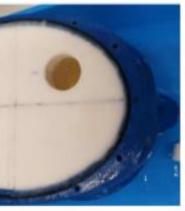
Experimental configuration

Concentrations of materials of human tissue mimicking phantoms

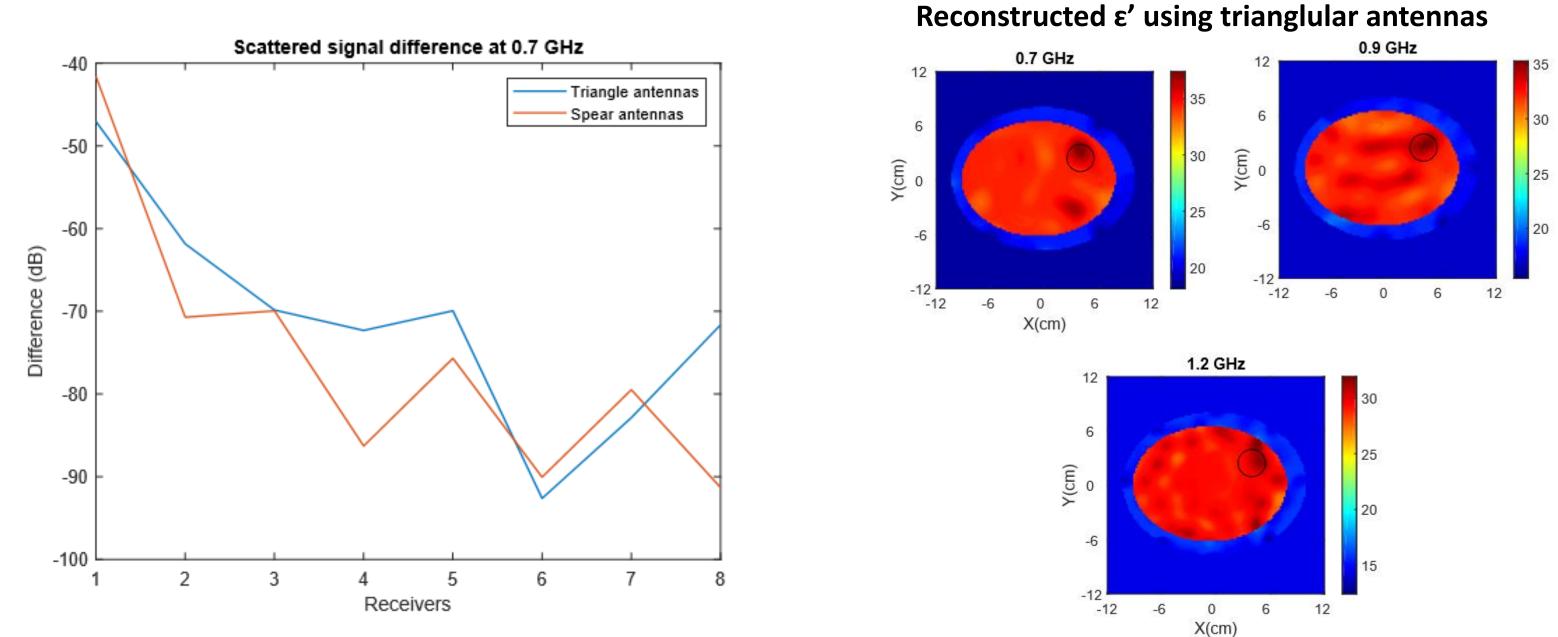
100 ml	Water	Gelatine	Kerosene	Oil	Propanol	Surfactant
phantoms		powder				
Brain	60 ml	11 gr	13 ml	13 ml	2.5 ml	1.5 ml
Blood/CSF	80 ml	16 gr	-	-	3 ml	1 ml

Anthropomorphic head model and the preparation stages

URSI GASS 2020

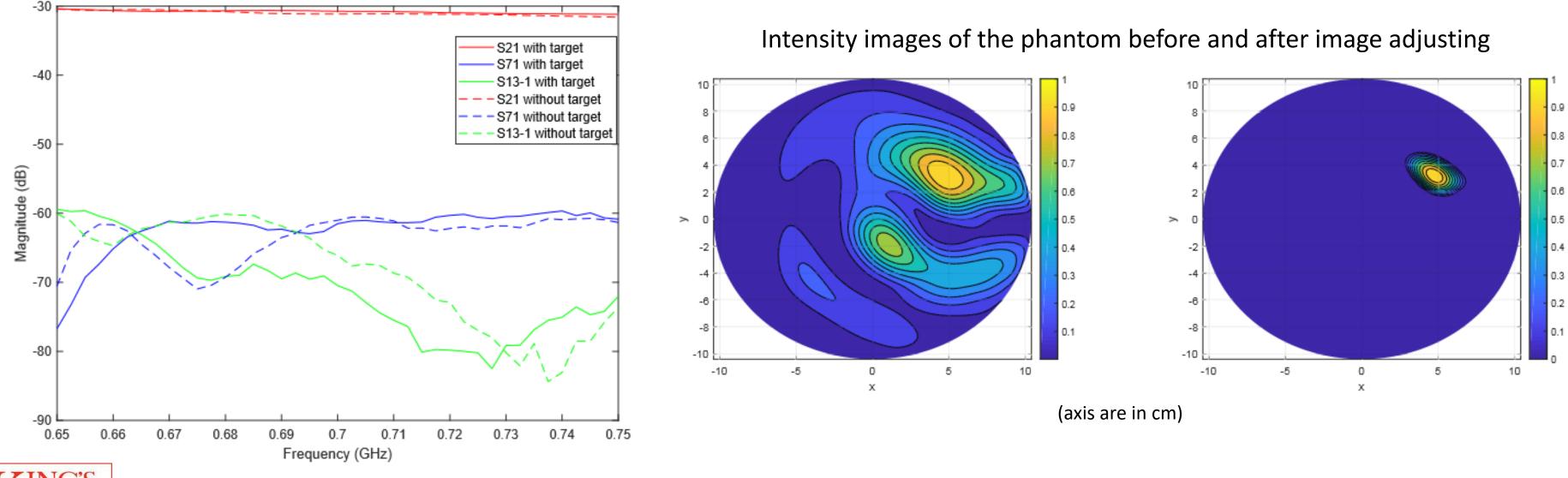


Dielectric properties of tissue mimicking phantoms at 1 GHz


	ε′	ε″
Brain	41.1	0.35
Blood/CSF	62.3	0.56ε′

Experimental Results

DBIM-TwIST results



Experimental Results

Huygens based radar results

S-parameter magnitude (dB) plot for different antenna distances

Conclusions and future work

Conclusions:

- 1. Target can be located through subtraction between "with-target" and "withouttarget" phantoms.
- 2. Both algorithms are capable of detecting and localizing the blood mimicking target in its approximate position.
- 3. Triangular antennas perform better with tomography while spear antennas produce better images with radar imaging.

Future work:

- 1. Increasing complexity and inhomogeneity of the head models for more realistic representation.
- 2. Development of a hybrid image processing algorithm, combining the strongest features of both DBIM-TwIST and Huygens methods.

References

[1] Z. Miao and P. Kosmas, "Multiple-frequency dbim-twist algorithm for microwave breast imaging," IEEE Transactions on Antennas and Propagation, vol. 65, no. 5, pp. 2507–2516, 2017.

[2] N. Ghavami, G. Tiberi, D.J. Edwards, A. Monorchio, "UWB Microwave Imaging of Objects With Canonical Shape", IEEE Transactions on Antennas and Propagation, Vol. 60, Issue: 1, 2012, pp. 231-239.

[3] M. Persson, A. Fhager, H. D. Trefná, Y. Yu, T. McKelvey, G. Pegenius, J.-E. Karlsson, and M. Elam, "Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible," IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2806–2817, 2014.

[4] J. A. Tobon Vasquez, R. Scapaticci, G. Turvani, G. Bellizzi, N. Joachimowicz, B. Duchêne, E. Tedeschi, M. R. Casu, L. Crocco, and F. Vipiana, "Design and experimental assessment of a 2d microwave imaging system for brain stroke monitoring," International Journal of Antennas and Propagation, vol. 2019, 2019.

[5] A. T. Mobashsher, K. Bialkowski, A. Abbosh, and S. Crozier, "Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection," Plos one, vol. 11, no. 4, p. e0152351, 2016.
[6] I. Merunka, A. Massa, D. Vrba, O. Fiser, M. Salucci, and J. Vrba, "Microwave tomography system for methodical testing of human brain stroke detection approaches," International Journal of Antennas and Propagation, vol. 2019, 2019.
[7] M. Hopfer, R. Planas, A. Hamidipour, T. Henriksson, and S. Semenov, "Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: A virtual data and human head phantom study.," IEEE Antennas and Propagation Magazine, vol. 59, no. 5, pp. 86–97, 2017.

[8] V. Zhurbenko, "Challenges in the design of microwave imaging systems for breast cancer detection," Advances in Electrical and Computer Engineering, vol. 11, no. 1, pp. 91–96, 2011.

References

[9] G. N. Bindu, S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, vol. 58, pp. 149–169, 2006. 2007.

[10] R. Scapaticci, J. Tobon, G. Bellizzi, F. Vipiana, and L. Crocco, "Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring," IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7328–7338, 2018.
[11] R. Scapaticci, L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research, vol. 40, pp. 305–324, 2012.

URSI GASS 2020

[12] O. Karadima, M. Rahman, I. Sotiriou, N. Ghavami, P. Lu, S. Ahsan and P. Kosmas, "Experimental Validation of Microwave Tomography with the DBIM-TwIST Algorithm for Brain Stroke Detection and Classification," Sensors, vol. 20, 2020.

