Georgia Tech 🕅

CREATING THE NEXT

Effect of Modes on THz Wireless Channels inside Metal Enclosures

Prateek Juyal, Jinbang Fu, and Alenka Zajić

Outline

- Introduction & Motivation
- Previous Work
- Measurement Scenarios
- Mode Sensitivity
- Results and Discussion

CREATING THE NEX

Conclusion

Introduction & Motivation

- Data communications between the components inside the computing devices presently operate through wire connections which pose a limitation on further scaling.
- Current Wireless communications frequencies cannot match the required data rates within the computing system.
- Use of **THz frequency bands in chip- to- chip wireless** communications is preferred.

Previous Work

- Wireless Interconnects at THz frequencies are preferred as compared to wired interconnects [1], [2]
- On-board THz wireless communication channel characterization has been conducted in [3]
- Measurements have been collected inside the rectangular metallic cavity which resembles the practical computer desktops [4]
- A path loss model which consists of the traveling loss, resonant modes-based power variation, and the loss due to the radiation pattern of the equipped directional antennas has been proposed in [5]
- For short range wireless communications between on-board components, a statistical channel model has been proposed in [6].

Measurement Scenarios

Two metallic cavities corresponds to different desktop sizes

(a) larger cavity dimension 30.5×30.5×5cm

(b) small cavity dimension 11×11×5cm.

Smaller cavity has a size close to Intel-NUC mini-desktop

Measurement Scenarios

- THz Measurement Setup
 - N5224 VNA
 - VDI Transmitter (Tx210) and VDI receiver (Rx148)
 - Directional horn antennas with 3 dB beamwidths of 12° and the gain varies between 22 and 23 dBi.

Parameter	Symbol	Value
Measurement points	Ν	801
Intermediate frequency bandwidth	Δf_{IF}	20 kHz
Average noise floor	P_N	-90 dBm
Input signal power	P _{in}	0 dBm
Start frequency	<i>f</i> _{start}	10 MHz
Stop frequency	f_{stop}	12 GHz
Bandwidth	В	11.99 GHz
Time domain resolution	Δt	0.083 ns
Maximum excess delay	$ au_m$	40 ns

Georgia Tech

Mode Sensitivity

For the electrically large cavity of given volume V, the number of modes can be approximated as [7]: $8\pi f^{3}V$

$$\mathsf{V}(f) \approx \frac{8\pi f^{\,3}\,\mathsf{V}}{3c^3}$$

$$\frac{\Delta f}{f} = \frac{\lambda^3}{8\pi V}$$

- λ is the free space wavelength. For the cavities shown in Fig. 1, the Δf at 300GHz is 2.56 and 19.71KHz respectively
- Larger value of Δf for the smaller cavity points to the less mode interference and consequently less path loss variation with frequency.

Results and Discussions

Metallic cavity dimension $30.5 \text{ cm} \times 10 \text{ cm} \times 10 \text{ cm}$. Stronger multipath as compare to original cavity presented in [4]

CREATING THE NEXT

Metallic cavity dimension $30.5 \text{ cm} \times 30.5 \text{ cm} \times 5 \text{ cm}$. stronger variation in path loss as compared with the height of 10 cm [4]

CREATING THE NEXT

Metallic cavity dimension $11 \text{ cm} \times 11 \text{ cm} \times 5 \text{ cm}$.

As compare to larger cavity, average path loss and path loss variation with frequency is reduced.

CREATING THE NEXT

Conclusions

- The effects of geometrical parameters on the THz wireless channel inside a metallic resonant cavity was presented.
- Transverse dimension of the cavity has stronger effect on multipath as compare to normal dimension.
- We demonstrated that the small size cavity has less path loss variation and less multipath due to increase in the frequency sensitivity.

References

[1] S. Priebe, C. Jastrow, M. Jacob, T. Kleine-Ostmann, T. Schrader and T. Kürner, "Channel and Propagation Measurements at 300 GHz," in *IEEE Transactions on Antennas and Propagation*, vol. 59, no. 5, pp. 1688-1698, May 2011.

[2] T. Kleine-Ostmann, C. Jastrow, S. Priebe, M. Jacob, T. Kürner and T. Schrader, "Measurement of channel and propagation properties at 300 GHz," *2012 Conference on Precision electromagnetic Measurements*, Washington, DC, 2012,

[3] S. Kim and A. Zajić, "Characterization of 300-GHz Wireless Channel on a Computer Motherboard," in *IEEE Transactions on Antennas and Propagation*, vol. 64, no. 12, pp. 5411-5423, Dec. 2016. doi: 10.1109/TAP.2016.2620598.

[4] J. Fu, P. Juyal and A. Zajić, "THz Channel Characterization of Chip-to-Chip Communication in Desktop Size Metal Enclosure," in *IEEE Transactions on Antennas and Propagation*, vol. 67, no. 12, pp. 7550-7560, Dec. 2019. doi: 10.1109/TAP.2019.2934908.

[5] J. Fu, P. Juyal, and A. Zajic, "Investigation of resonance based propagationloss modeling for thz chip-to-chip wireless communications," in 14th *European Conference on Antennas and Propagation* (EuCAP). IEEE, 2020, pp. 1–5.

[6] S. Kim and A. Zajić, "Statistical Modeling and Simulation of Short-Range Device-to-Device Communication Channels at Sub-THz Frequencies," in *IEEE Transactions on Wireless Communications*, vol. 15, no. 9, pp. 6423-6433, Sept. 2016. doi: 10.1109/TWC.2016.2585103

[7] D. A. Hill, Electromagnetic Fields in Cavities. Hoboken, NJ, USA: Wiley, 2009.

Thank You !

