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Introduction
® Electromagnetic (EM) field sensors have
evolved from single port devices for
measuring single field components, to
few-port devices that measure multiple

components, and finally multi-port
devices for simultaneous measurement
of all six field vector components.

* These multi-port systems include { Field sensor } {Mu,ti_pon Diversity}
antenna concepts for wireless
mobile communications, often 1
referred to as energy-density { Total E-field } {Multi-port MIMO}
antennas.

® Their basis is the combination of

some or all of the EM field
components - an idea attributed to

John Robinson Pierce in the early
1960s".

R. Vaughan and J. Bach Andersen, Channels, Propagation and Antennas for Mobile Communications.
Electromagnetic Waves Series 50, IEE, 2003
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Dual-loaded Loop Sensor

e Using the loop Fourier analysis from the works
of Storer' and Wu?, Kanda® extended the
analysis of Whiteside and King’s dual-loaded
loop sensor* for the case of general incident
field distributions.

® In the present work, we rederive Kanda’s
results, proposing a small change which are
validated with simulations.

® Throughout this paper complex notation is used
and the time harmonic factor, €“*, has been
suppressed.

1 (J. E. Storer, “Impedance of thin-wire loop antennas,” Transactions of the American Institute of Electrical
Engineers, Part I: Communication and Electronics, vol. 75, no. 5, pp. 606—619, 1956)
2 (T. T. Wu, “Theory of the thin circular loop antenna,” Journal of Mathematical Physics, vol. 3, no. 6,
pp. 1301-1304, 1962)
3 (M. Kanda, “An electromagnetic near-field sensor for simultaneous electric and magnetic-field measurements,”
IEEE Transactions on Electromagnetic Compatibility, vol. EMC-26, no. 3, pp. 102—110, Aug. 1984)
4 (H. Whiteside and R.W.P. King, “The loop antenna as a probe,’ [EEE Transactions on Antennas and
Propagation, vol. 12, no. 3, pp. 291-297, May 1964)
4/18



SFU SIMON FRASER UNIVERSITY

® The boundary conditions on a perfectly conducting loop with two antipodal loads
are that the tangential electric field is zero everywhere except across the loads

—1(0)Z,5(¢) — I(m)Z18(¢ — ) = bE} (b, ¢)+ /L(¢> )¢ )de’, (1)

where 7 is the wave impedance in the medium, Z; the antipodal port
impedances (assumed to be the same), £, (b, ¢) is the tangential component of

the incident electric field on the loop surface, L(¢ — ¢) is the integral kernel, and
I(¢) loop current.

® The functions of ¢ are expressed as Fourier series

El(b,¢) = ane—/n4> = fn:;—7r / El(b,¢)e" do, 2

—T

1

0= ke = b= [reevas ©
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The integral kernel, L(¢ — ¢’), is also expressed as Fourier series

9= ane i, (4)
kb 2
an=a-n= 7 (Nap1 +No-1) - Z—an, (5)
1 1 2kb
na
M=M= (T2 ) 0 () = 5 [ (@anlo) + o) o
0
! In4 2"*1 ! 0 6
+— [ Indn+y - 2::2m+1 , n# (8)
No=10m® 7 / (Q0(X) + jdo(x)) dx. 7)
s

Qp is the Lommel-Weber function, J, is the Bessel function, v = 0.5772- - - is Euler’s
constant, and fy and Kj is the modified Bessel function of the first and second kind,
respectively.
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Substituting (2), (3) and (4) into (1) and performing the integration yields the Fourier
series

~l0)215(9) = I(m)2.8(¢ = m) = i (jinanln + bf") e—ino (8)

—o0

The coefficients for this Fourier series are

M ol + bty = 5 [ 10256) - 1m205(0 - m)) s, ©)

-

= —22—; (I(0) + I(m)e™), (10)

from which the Fourier series coefficients for the loop current are

2nbfy  Z,
In=—- — - 1(0) + I(7)e™) . 11
n i — (I(0) + I(m)e™) (11)
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® For electrically small loops, the current can be approximated from the first few
coefficients (n < 2) of its Fourier series.

® When this is done, using (3) and (11), the difference current between the ports is

2wbY;

In=10)—l(m)=2(h+ 1) = EETAZ

(i +1-1), (12)

where Y; = 2/jnmay is the admittance of the n = 1 current mode. (12) is
different from Kanda in that it doesn’t assume that f; = f_4 and that there is a
sign change.

® The sum of the port currents is

4nbY,

ke =1(0) + i(m) = 2l = YA

where Yy = 1/jnmag is the admittance of the n = 0 current mode. (13) is
different from Kanda in that there is a sign change.
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Linearly Polarized Planewave
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(a) Perspective view  (b) Side (plane of (c) Top view
incidence)

For a linearly polarized planewave,

E(r)=Ee *" = X+ E,y + E;2 (14)
= E(’) ((— cos 1y sin ¢ + sin 1 cos 6 cos ¢g) X + (cos 1) cos ¢g + sin1p cos O sin ¢ ) ¥
+sinsin 02) (15)

The magnetic intensity is

E i g—jk-r
H(r) = 7k x E = HxX + Hyy + HzZ2 = ——— ((cos ¢ cos 8 cos ¢y
n

= +sm1/;sm o) X + (cos 1) sin ¢pg cos @ — sin1p cos ¢g) ¥ + cosypsin62) .  (16)
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E, Fourier coefficients for planewave

The ¢-component of the electric intensity (15) along a 2-directed loop of
radius b, located at the origin, is

Eé;(b, @) = E} (cos ) cos (¢ — o) — sinpsin (¢ — o) cos 6) /b cos(¢—do)sin

(17)
= i fre " (18)
where
1 r i in
h= o / Ei(b, )e™ dg (19)

_njndo [ o nJd, (kbsin9) . , .
"¢ (smwcos oikb Gng  Ticos wdy(kbsin 0) (20)
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Current response for planewave

From (20),
fo = jcospdi(kbsin 0) (21)
~ —j% cossinf (22)
_ ’ . . . Ji(kbsin 0)
fi + f_1 = 2 cos ¢ cos Ji (kbsin ) — 2sin ¢ sin 1) cos eikbsin 7 (23)
~ COS ¢g cos 1) + sin ¢g sin 1) cos O (24)

Comparing (22) and (24) to the field expressions for the electric and magnetic
intensities (15) and (16), yields

- _ jemkbPnYs
ke = 1(0) + I(m) = =5y 7> He (25)
In = I(0) — I(m) = —-27BY: (26)

1+2v,z.
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Simulation Results
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(e) Results using (25) and (26)
Figure: (a) Plane wave propagating in the +X-direction, polarized in the +y-direction
(i.,e. v =0,0 ==7/2,and ¢y = 0). (b) (25) compared against (26) and show excellent

agreement when kb < 0.2 (Z; = 315).
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Centrally located dipole moments

e Kanda and Hill extended the application of a dual-loaded loop to

detecting centrally located electric and magnetic dipole moments'

e The azimuthal electric field is

Eég = mm‘sz + me,yGe Cos(b — me’xGe sin ¢, (27)
where,
_n (KK e
Gm747r(b b2>e ’ (28)
_on (k1 TN ke
Ge = 47r<b+b2+jkb3>e : (29)

and mg; and myy; are the Cartesian components of the centrally located
electric and magnetic dipole moment.

M. Kanda and D. A. Hill, “A three-loop method for determining the radiation characteristics of an electrically
small source,” IEEE Transactions on Electromagnetic Compatibility, vol. 34, no. 1, pp. 1-3, Feb. 1992.
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Current response from dipole momentsBB . e e

The Fourier series coefficients for (27) are

fO = mm,sz, (30)
me,yGe Me xGe
fi= —2— + —— 31
= me,yGe _ me,x‘Ge’ 32)
2 2j
fi+f 4= menye. (33)

The sum and difference currents to components of the moments,

B 4rbYyGm
112v2,

2wbY: G,
Ia = I(0) — I() = 7ﬁm&y.

Is = 1(0) + I(7) = Mm,z, (34)

(35)

Note that (35) is half of the value presented in previous work’ -2, and both (34) and (35)
differ from the previous work by a sign change.

M. Kanda and D. A. Hill, “A three-loop method for determining the radiation characteristics of an electrically
small source,” IEEE Transactions on Electromagnetic Compatibility, vol. 34, no. 1, pp. 1-3, Feb. 1992.
23, Tofani, P. Ossola, G. d’Amore, et al., “A three-loop antenna system for performing near-field measurements of
electric and magnetic fields from video display terminals,” /EEE Transactions on Electromagnetic Compatibility,
vol. 38, no. 3, pp. 341-347, Aug. 1996.
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Simulation of magnetic moment

Magnetic Dipole Moment
loop radius= b/500

loop s=b
— . K conductor radius = a

-160 L —— I,y (theory)

180 /’,/ —~=- I,y (Simulation)
B N O I5,y (Simulation)

-200 10- ° 10°

kb (radians)

(b) Simulation results (/ = 1A).
Figure: y-directed loop with a y-directed magnetic dipole source at the centre.
a = b/52, the port gaps = 2a, and the magnetic dipole radius = b/500.
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Simulation of electric moment

Electric Dipole Moment
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(a) Simulation model.
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(b) Simulation results.
Figure: Centrally located electric dipole source. (a = b/52, port gaps = 2a, dipole

length = b/83, dipole width = b/7,500, and the dipole feed gap = b/25, 000)
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Conclusions

® Presented the theory of coupling incident electric field onto an
electrically small dual-loaded loop.
® Propose a small correction to the pre-existing theory.

® Performed simulations to compare simulation results to theory

® Linearly polarized planewaves agree well with theory (sign
change)

® The coupling from the magnetic dipole moment was straight
forward to simulate and agreed with theory.

® The coupling from the electric dipole moment was challenging to
simulate and the results agree with the small proposed corrections
to the theory.
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