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Motivation

• Rigorous numerical methods for solving problems of 
wave scattering, such as the Boundary Element 
Method (BEM), are limited to moderate frequencies 
and moderate scatterer sizes

• For high frequencies and large scatterers, asymptotic 
methods are traditionally used

• Recently developed “fast” methods, such as the MLNG 
approach, can extend the range of rigorous simulation 
to at least the lower part of the range of asymptotic 
methods 



Motivation

• The frequency range of rigorous methods is bounded from above, 
and that of asymptotic methods is bounded from below 

• The intersection of the ranges of “fast” rigorous and asymptotic 
methods opens up opportunities of their mutual validation on 
nontrivial examples

• In this work, an iterative MLNG-based solver for acoustic 
scattering problems [1] is compared with an asymptotic method 
[2, 3] on strongly elongated spheroids

Conventional rigorous

“Fast” rigorous

Asymptotic



Scalar (acoustic) scattering
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Boundary value problem

Time dependence: te



Combined-Field (Burton-Miller)  Equation

• uniquely solvable at all frequencies
• no spurious resonances

Stable convergence for large scatterers
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Boundary Element Method 

1) Triangulation of the surface
2) Piecewise-constant basis functions 

3) Approximation of integral operator

4) System of linear algebraic equations
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Computational Complexity

Conventional approach:
System of linear algebraic equations

σ𝑛=1
𝑁 𝐴𝑚𝑛𝑝𝑛 = 𝑝𝑚

inc,  𝑚 = 1,… ,𝑁

𝑁 basis functions  𝑁 × 𝑁 matrix {𝐴𝑚𝑛}

1) Storage 𝑂(𝑁2)
2) 𝑂(𝑁2) operations per iteration
3) Computational complexity is 𝑂 𝑁2𝑁iter

𝑁iter is the number of iterations



Computational Complexity

MLNG algorithm: 
Fast calculation of integrals: 

is the Green’s function;                is slowly  oscillating 

Matrix-free 
1) Storage 𝑂(𝑁 log𝑁)
2) 𝑂(𝑁 log𝑁) operations per iteration
3) Computational complexity is 𝑂(𝑁 log𝑁𝑁iter)

[1] E. Chernokozhin, Y. Brick, and A. Boag, “A fast and stable solver for acoustic scattering
problems based on the nonuniform grid approach,” J. Acoust. Soc. Am., Vol. 139, no. 1, pp.
472-480, 2016.
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MultiLevel Nonuniform Grid (MLNG) algorithm

• Multilevel hierarchy of subdomains: 

• Parent-child relationships between subdomains
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MultiLevel Nonuniform Grid Algorithm

Near zone

Interpolation zone
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Partial fields:       

For each partial domain, the near zone and the 
interpolation zone are defined and 
a spherical interpolation grid is assigned 



Only for bottom-level domains, partial fields

are calculated directly. 

For non-bottom levels, 

they are interpolated with 

phase-and-amplitude compensation

from the interpolation grids of the 

child subdomains  
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MultiLevel Nonuniform Grid Algorithm



x

Fast calculation of integrals 
∀𝐱, ∃𝑂(log𝑁) nonintersecting subdomains 𝑆𝑛

𝑙
𝐱 : 𝑆 = 𝑙,𝑛ڂ 𝑆𝑛

𝑙
(𝐱) such that

bottom level: direct integration 
non-bottom levels: interpolation from sparse grids    

is calculated for 𝑂 1 operations:  

The field at all 𝑁 points,

is calculated for O(𝑁 log𝑁) operations  
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MLNG-based fast solver

MLNG algorithm  +  Conjugate Gradient method

• Total number of operations is 𝑂(𝑁 log𝑁𝑁iter)

• Implemented for rigid scatterers up to 𝑁~106 unknowns 



Example: a prolate spheroid 

~1,500,000 unknowns



Asymptotic approximation

The classical V. A. Fock approximation reads

( k is the wave number, s is the arc-length,                                     ,   is 
the radius of curvature, is the Airy function in Fock notations)

However, it is not suitable in the case of too elongated bodies, 
because to get the desired accuracy  it requires   kp to be very large.
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Special asymptotic approximation

Based on the assumptions:  

1. High frequency,    kp>>1   ( 2p is the focal distance) ,

2. Strong elongation ( a is minor semi-axis),

3. Small angle of incidence , namely 

Ckp 

)1(
2

O
p

ka




Asymptotic procedure

1. Introduce spheroidal coordinates

2. Represent the field as the sum of the forward and backward waves, 
both described by parabolic equation approximation 

where  is the scaled radial coordinate, 

 pzpypx  ,sin11,cos11 2222

),,(),,(  
b

ikp

f

ikp UeUeu  

)1(2   kp



2

, /2

02
0

( 2) 1
1 2 2

' 1
, /2 , /2 2

( )4 cos( ) 1 1

!(1 ) 1 21

( )( )
, ( ) ( ) (4 )

( ) 2 ( ) ( )

itn
it n

n n

ik p ik p n
n itn

n n
it n it n

M ii n n
u it

n

ite r t e
dt r t i kp

iW i W i it

 

  

   

  



 

  
 



   
     

     

 
  

    

 

Here,   M and W are the Whittaker functions.

The final approximation for the field on the surface of a hard spheroid:



Comparison

• Comparison was performed on two hard spheroids both having 
length of 10 m but different aspect ratios: 1:5 (spheroid A) and 1:10 
(spheroid B)

• Acoustic pressure fields on the surface excited by a plane wave at 
different frequencies and angles of incidence were compared



Comparison

Amplitude of the field on spheroid A Amplitude of the field on spheroid B



Comparison

The difference of the results for axial incidence on spheroid A

𝜆 = 1
𝜆 = 1/8



Comparison

The difference of the results for axial incidence on spheroid B

𝜆 = 1/16



Comparison



Conclusions
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• The comparison has shown that the difference between the
surface fields calculated using the MLNG-based solver and
the asymptotic approximation is generally within 1% in the
integral norm if only the absolute values are compared and
about twice as large if the phases are also taken into account

• Most of the deviation, which proved to be about 1%, is due
to the numerical noise caused by the use of the zeroth order
basis functions in the MLNG-based algorithm

• This fairly good agreement demonstrates the accuracy of
both methods and, in particular, provides a nontrivial
validation for the MLNG-based solver, which in turn supports
its application to a much wider class of scatterers
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