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Grain bin imaging

� Microwave imaging of the interior of a 
grain bin

� Voxel-wise reconstruction of 
permittivities using contrast source 
inversion requires calibration and a 
good initial guess

� Bulk parameters can be used to 
calibrate experimental data to 
synthetic models
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Grain bin (with grain) is modeled in 3D using a finite 
element mesh, an example tetrahedral mesh on the grain 

is shown.



Measurement challenges

� Physical limitations prevent 
measurement on known calibration 
targets

� Bin measurements for inventory 
require climbing in the bin and are 
dangerous and impractical
� i.e. we cannot obtain a large dataset 

to be used for neural network 
training.
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Hopper-style bin at the University of Manitoba campus.



Objectives

� Obtain bulk parameters:
� Height, cone angle, complex-valued 

bulk permittivity of grain

� Use supervised machine learning 
� Train only on synthetic data

� Demonstrate performance on 
experimental data
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Grain in bin (red) is characterized by bulk parameters.



Neural networks

� Three fully connected networks
� Differ in number of hidden layers, and maximum number of accepted frequencies

� Trained solely on synthetic data

� Input shape: 552Nx1 column vector 
where N is the number of frequencies

� Output shape: 4 parameters
bulk parameters: [height, cone angle, permittivity (real part), permittivity (imaginary part)]
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Neural networks

7

Introduction Neural Network Datasets Results Conclusion



Training data

� Building an experimental training set is not practical:
� Filling a grain bin with a known and controlled amount of grain is difficult

� Supervised learning requires synthetic training data

� Frequencies: 80MHz, 85MHz, 90MHz, 95MHz, 100MHz, 105MHz

� Synthetic data set:
� Each dataset consists of 552 data points: Synthetic electromagnetic field estimate at each 

receiver point

� 50,000+ datasets at each frequency

� Generated by a finite element method forward solver
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Testing (experimental) data

� Frequencies: 80MHz, 85MHz, 90MHz, 95MHz, 100MHz, 105MHz

� Experimental data set:
� 14 labelled data sets at various heights and cone angles (no permittivity labels)

� Measurements taken from Hopper-style bin on University of Manitoba campus

� Each dataset at each frequency consists 552 data points: S-parameter data at each 
transceiver (proportional to phi component of magnetic field)

� Raw, uncalibrated experimental data
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Simplex inversion performance

� Our previous work uses an optimization method (simplex method) for obtaining the 
bulk parameters
� Simplex inversion is performed on data from a single frequency

� We use the results from this simplex inversion (at two separate frequencies) as a 
baseline for neural network performance

10

Introduction Neural Network Datasets Results Conclusion



Height prediction
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� Neural Network 3 (NN3) 
using all frequencies 
performed best on height 
predictions (bold dark red)

� Comparison to Simplex 
Inversion (SI) at 90 MHz 
(bold red dash)
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Angle prediction
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� NN3 for 85-100 MHz 
performed best on angle 
predictions (bold blue)

� Comparison to SI at 90 
MHz (bold red dash)
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Permittivity prediction

Method Avg. ε’ std. Avg. ε’’ std.
Neural Networks* [4.17, 4.25] 0.219 [-0.502, -0.435] 0.0690
Simplex Inversion (70)
Simplex Inversion (90)

4.11
4.07

0.233
0.141

-0.572
-0.657

0.303
0.421

Composite model[1] [3.90, 4.13] -- [-0.42, -0.38] --
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� Permittivity predictions are reasonably close to both Simplex Inversion (SI) predictions, 
and theoretical model predictions

� Bulk permittivity: ε = ε’ + jε’’
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*Average permittivity values are given as a range of averages across all networks tested
[1] A. Kraszewski, J. Agric. Engng Res., 1989



Computational cost

� Simplex inversion: 
� Measurement analysis (per frequency): ~3 hours, per measurement

� Neural network:
� Synthetic data generation: ~1 day per frequency, one time cost

� Training data preparation and network training: < 30 minutes, one time cost

� Measurement analysis: < 1 minute, per measurement
� Analysis time is not significantly affected by additional frequencies once the synthetic training set is 

created.
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Conclusion
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� Neural network trained solely on synthetic data can accurately obtain bulk 
parameters from experimental data

� Bulk parameters can be obtained from raw, uncalibrated data
� For continued field use, neural network method reduces computational cost of 

parametric inversion (as compared to optimization based simplex inversion)



Thank you
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