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Motivation - Wide application of SAR

 Urban construction planning  Ship detection

 Disaster monitoring  Vegetation coverage survey



 Radio frequency band become very crowded
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Motivation - Radio Frequency Interference (RFI)

 SAR is more likely to contaminate by RFI for its 

wide frequency band 

 Complex radio environment 
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Motivation - Adverse impacts of RFI
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SAR image corrupted with NBI

RFI have intuitive adverse impacts on SAR imaging.
 RFI would reduce signal-to-interference-plus-noise power ratio (SINR) of SAR data 

 RFI would yield inaccurate estimates of critical Doppler parameters

 RFI would abate the accuracy of feature extraction and posing a hindrance to the SAR 

image interpretation

SAR image corrupted with WBI

It is necessary to develop interference mitigation method for SAR.



6

SAR RFI mitigation techniques are divided into data-driven algorithms and model-

driven algorithms. 

Data-driven algorithms

 design a reasonable filter

 separate the interference and 

useful signal in a specific 

domain

 Large loss of signal energy 

 Dependent on the quantity and 

quality of interference samples ( 

as for deep learning algorithms)

Motivation - Research status

Deficiency ：

Model-driven algorithms

 utilize mathematical models to 

characterize the SAR echoes

 optimize the model parameters 

under specific criteria

 Heavy calculation burden

 The poor mitigation result due 

to the inaccuracy signal model

 The lack of  robustness for 

different scenes

Deficiency ：



WBI --

SAR echo  --

Radar system noise --

 SAR received echo model 
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       s k x k i k n k= + +

Signal modeling and TF analysis

 s k

 n k

  : ,i k CMWBI SMWBI

     xs k i k n k= +

noise-like distribution

Assumption

 The simplified signal model

 The energy of effective interference is much greater than that of target signal.

 Compared with the strong WBI, the target signal has a noise-like distribution.

The equivalent additive noise -- :𝑛𝑥 𝑘      xn k n k x k 
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 The signal characteristics of time and frequency domain is not incomplete.

 Radar echo is time-varying nonstationary signal.

 STFT tools could provide time-localized spectral information of the frequency 

components of a signal varying over time

STFT is a linear invertible transformation.

STFT

ISTFT

Time domain                   Frequency domain                                               TF domain

Signal modeling and TF analysis
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 The representation of SAR echo in TF domain

Our purpose is to separate target signal and interference 

in TF domain.

 S I N

     xs k i k n k= +

STFT ISTFT

= +

Signal modeling and TF analysis
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 Obviously, WBI only occupies a limited part in the TF domain.

 WBI is low-rank compared to the echo signal in the TF domain.
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 Low-rank characteristics of WBI in TF domain

Different azimuth 

echoes from the 

measured WBI 

data

Signal modeling and TF analysis

Low-rank matrix recovery
min

p


I
S I

Low-rank matrix factorization
min H

p


U,V
S U V

 Matrix factorization
H

I = U V
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 Gaussian distribution hypothesis is used in traditional 

algorithms, which means L2-norm optimization.

 It is sensitive to non-Gaussian noise and outlier value.

 The probability density of this data is more consistent 

with the Laplace distribution.
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 Statistical characteristics of the signal

Signal modeling and TF analysis

Low-rank matrix factorization
min H

p


U,V
S U V

Low-rank matrix factorization

1
min H

U,V
S - U V

Laplace distribution 

assumption
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WBI mitigation methodology

 Bayesian model formulation
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 The TF noise has a Laplace distribution hypothesis, based on the previous analysis

 The Bayesian posterior model is given based on the prior assumptions of the model 

parameters.

 In general, we assume       and       obey the complex Gaussian-Gamma distributioniu
jv
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 Approximate variational Bayesian inference
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 It is difficult to solve such a complex posterior probability directly.

 The variational Bayesian inference can be utilized to approximate the full posterior 

distribution.

 General solution of variational Bayesian inference can be written as:

 The approximate distribution and factorization results for the forward  

Bayesian posterior can be given as following
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 Alternating iteration until convergence

 Estimation of and ,with parameters                         : iq u  
iuq , , ,

i iu u i ia bΛ μ
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WBI mitigation methodology



 Substitute              with              , then estimate              ,with parameters                  :
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 Reconstruct interference and cancellation in time domain
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Experimental results

 C-band Sentinel-1 satellites of the European Space Agency (ESA)

 Resolution : 5m      20m (Rang      azimuth)

 Data description
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（a）original                                （b）GoDec （c）proposed method

Experimental 1. The measured SAR data is acquired by the Sentinel-1A in VH polarization

mode. The mitigation results shows that the imaging applying proposed method is better than that

by GoDec.
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Experimental 2. The measured SAR data is acquired by the Sentinel-1B in VH polarization 

mode. It shows that there is some residual interference in scene and ships are blurred by WBI 

after applying the GoDec. However, it can be seen that WBI is well mitigated and ships are well-

focused after applying the proposed method.
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（a）original                             （b）GoDec （c）proposed method

Experimental results
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Method

Data
Original GoDec Proposed Method

Sentinel-1A VH 5.49dB -5.87dB -10.09dB

Sentinel-1B VV -7.08dB -12.41dB -14.90dB

 Quantitative analysis
2
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and        represent the number of pixels of the weak scattering area and the corresponding 

pixel value;      and      represent the number of pixels of the strong scattering area and the 

corresponding pixel value.

N nI

M
mI

A smaller MNR 

demonstrate the contrast of 

SAR image is stronger.

Experimental results
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Conclusion remarks

 Constructing  a factorization model for recovery WBI.

 Establish Bayesian model formulation , and use variational Bayesian 

inference for posterior probability estimation.

 Innovation 

 Future research

 Keeping find proper probability models for WBI and designing effective 

interference mitigation method in the future

 Jamming and Anti-Jamming never ends
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Thanks for your attentions!


