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Abstract

A fast solver based on the multilevel nonuniform grid ap-
proach and an asymptotic approximation designed for scat-
tering by strongly elongated spheroids are mutually vali-
dated. Good agreement between the numerical and asymp-
totic solutions is observed over a wide frequency range for
spheroids with various aspect ratios. Numerical noise of the
numerical solution is estimated.

1 Introduction

The recently developed “fast” methods for calculating wave
scattering, such as the multilevel fast-multipole algorithm
(MLFMA) [1] and the multilevel nonuniform grid (MLNG)
approach [2], can significantly extend the range of rigorous
numerical simulation, far beyond the range of the “conven-
tional” numerically rigorous methods such as the Boundary
Element Method (BEM). Based on the traditional approxi-
mation of the integral equations, the MLFMA and MLNG
algorithm are significantly faster and less memory consum-
ing than the conventional BEM. This enables one to use the
fast methods in the range of frequencies and scatterer sizes
traditionally considered to be in the range of high-frequency
asymptotic methods, e.g., physical optics.

The validation of the fast methods in the high-frequency re-
gion is hampered by the lack of exact solutions. A good op-
portunity for nontrivial validation is provided by the com-
parison to various asymptotic solutions. For asymptotic
methods, the ranges of their applicability are typically not
defined exactly, but depend on the magnitude of some pa-
rameter. As for rigorous methods, their applicability is lim-
ited only by the available computer memory and acceptable
computation time, since the integral equations and their ap-
proximations remain valid regardless of the frequency and
scatterer sizes. Therefore, an agreement between the nu-
merically rigorous and asymptotic solutions attests to the
accuracy of both. On the other hand, the limits of applica-
bility of the asymptotics can be refined by the comparison
to rigorous numerical solutions validated with the help of
the same asymptotics.

In this work, we performed mutual validation of an iterative
MLNG-based solver for scalar problems [2] and an asymp-

totic approximation developed for scattering by strongly
elongated spheroids [3, 4].

2 The MLNG-Based Iterative Solver

The MLNG approach and the fast iterative solver on its ba-
sis are described in sufficient detail in [2]. Here, we only
outline them in brief.

The scatterer is assumed to be a perfectly rigid body im-
mersed in a nonviscous fluid. The scattering problem is
formulated in the form of the Burton-Miller hypersingular
integral equation [5]. In accordance with the BEM, the scat-
terer’s surface S is triangulated and a basis of N piecewise-
constant functions with the supports on the triangles is in-
troduced. Then, after the testing procedure with all N basis
functions, the problem formally reduces to a system of N
linear algebraic equations, ZI =V, where Z is an N X N
matrix.

In the MLNG approach, in order to avoid the O(N?) stor-
age and O(N?) computational complexity of calculating
the elements of the matrix Z and matrix-vector products
ZI when applying iterative methods, the matrix represen-
tation of the discretized integral operator is replaced with
a less memory-consuming hierarchical tree-like structure.
The domain of integration S is divided into progressively
smaller subdomains S; ,, of progressively lower levels [ = 1,
2, ..., L, and the parent-child relations between subdo-
mains are established. For each subdomain, except for the
top-level ones (I = 1,2), the near and interpolation zones
are defined, and to each of them a spherical interpolation
grid I'; ,,, is assigned. For each observation point r € S, we
denote by S3(r) the union of 3"-level subdomains to whose
near zones the point r does not belong; by S;(r), the union
of all I-th level subdomains from S\ (S3(r)U...US;_(r))
to whose near zones r does not belong; and, by N(r), we
denote the complement S\(S3(r)U...US.(r)). Thus, for
each observation point r € S, we have a unique decompo-
sition of the domain of integration S into nonintersecting
sets:

S=N(r)USs(r)uU...US;(r)U...USL(r). (1)

Since the components of decomposition (1) are noninter-
secting, the field produced by sources / on § at the point



r € S can be represented by the sum of integrals over these
components. The integral over N(r) is calculated directly.
The integrals over the other components S;(r), which con-
sist of selected subdomains S; ,,, are evaluated by the inter-
polation to r of the amplitude-and-phase compensated field
stored in the grids I'; ,, assigned to them. The result of inter-
polation is multiplied by the phase-and-amplitude restora-
tion factor, which depends on the point r and the subdomain
Si.m- The role of this factor and its reciprocal, the phase-
and-amplitude compensation factor, is to compensate the
rapidly oscillating e *" behavior of the field and improve
the accuracy of interpolation (for details, see [2]). This pro-
cedure (the MLNG algorithm) enables one to satisfy N test-
ing conditions for a given source field I by asymptotically
O(NlogN) rather than O(N?) operations needed when the
same testing conditions are satisfied using matrix Z. The
required storage is also on the order of O(NlogN) as op-
posed to the O(N?) storage needed for matrix Z. Being ap-
plied in combination with the conjugate gradient method,
the MLNG algorithm yields an efficient iterative solver.

3 Asymptotic Approximation

Classical short-wave asymptotic expansions in penumbra
[6] work perfectly well for cylindrical geometries if the ra-
dius is greater than the wavelength A. Its applicability for
spheres requires the radius to be greater than 10-15 A. For
elongated bodies classical asymptotics gives satisfactory re-
sults only for bodies longer than several hundred A. To
improve the performance of the asymptotic approximations
for the paraxial diffraction by prolate spheroids a new tech-
nique have been recently developed [3, 4].

The basic idea of this technique is to fix the relation
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between the wavenumber k, the semi-axes: major b and
minor a and the half-focal distance p = vb% —a?. Then,
derivations in the frame of the parabolic equation method
written in spheroidal coordinates (§,1,¢):
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lead to the representation for the forward wave. However,
it is slowly attenuated and reaches the shaded tip of the
spheroid with a sufficiently large amplitude. In a vicinity
of this tip one can approximate the spheroid surface with
the surface of the paraboloid and use exact separation of
variables in Helmholtz equation rewritten in paraboloidal
coordinates. This determines the amplitude of the back-
ward wave. The final representation for the total field on
the surface of the hard spheroid can be expressed as
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dt. (3)

Here 6, is the Kronecker delta, while M and W are the
Whittaker functions. The angle of incidence 8 is present
in (3) via parameter B = \/kpO, which is assumed to be
bounded when kp — oo. The second term in the numerator
of the last fraction in (3) corresponds to the backward wave
and
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When kp is very large, r, rapidly oscillate with respect to ¢
and the backward wave contribution can be neglected.

Usually it is sufficient to sum up no more than 10 angular
harmonics in (3) and the essential part of the integration do-
main is usually bounded by |¢| < 10. However, the specifics
of the asymptotic approximation (3) is in the requirement
that parameters ¥ and 8 remain bounded. The increase of 3
may result in the necessity to take into account more angu-
lar harmonics and it also extends the domain of integration
towards positive values of 7. Larger values of y require the
integration interval to be extended in the negative direction.

4 Comparison

The applicability of the asymptotic approximation (3) im-
poses some restrictions on the parameters of the test prob-
lems. Namely, the spheroid should be sufficiently elongated
(parameter y should not be large) and the angle of inci-
dence should be small (parameter 3 should not be large).
For the numerical experiments we use two hard spheroids,
both having the length of 10 m, but different aspect ratios
1:5 (spheroid A) and 1:10 (spheroid B). We compare the
values of the acoustic pressure fields on the surface excited
by a plane wave at different frequencies and angles of in-
cidence. In the case of axial incidence, the amplitudes of
the fields are compared in Fig. 1 for spheroid A and Fig. 2
for spheroid B. For low frequencies, the difference between
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Figure 1. Amplitudes of the field on spheroid A.
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Figure 2. Amplitudes of the field on spheroid B.
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Figure 3. The difference (asymptotic minus numeric) of
results for axial incidence on spheroid A with A = 1 m
(Test 1) and A = 1/8 m (Test 7).

the asymptotic and numerical results have random charac-
ter, but when the frequency increases one can notice some
systematic error, see Fig. 3. For more elongated spheroids,
the systematic error is not observed even at two times higher
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Figure 4. The difference (asymptotic minus numeric) of
results for axial incidence on spheroid B with A = 1/16 m.

frequency, see Fig. 4. Therefore this systematic error can be
due to the error of the asymptotic approximation. However,
such error is not present in the electromagnetic variant of
the asymptotic approximation as have been checked in [7].

The fast solver computes the fields at the centroids of the
mesh. So, to get the cuts presented on Figs. 1-4 some
additional computations are needed. However, it is pos-
sible to compute asymptotic approximations exactly at the
same points on the surface and then calculate the norms of
the differences. We compare both the amplitudes of the
fields 8; = |u,| — |us| and the complex values & = u, —uy,
where u, is the result obtained with the use of the asymp-
totic approximation (3) and uy is the value computed by
the fast solver. The differences &, includes highly oscilla-
tory factor and therefore are more sensitive to the param-
eter kp. Table 1 presents the ¢; norms of the errors. In

Table 1. The ¢; norms of the errors for A = 2(1=m)/2

n \ centroids 6=0° 0 =10°
Spheroid A | [ | &0 | &0 | %]
1 11232 | 0.0072 | 0.0192 | 0.0077 | 0.0207
2 21624 | 0.0078 | 0.0217 | 0.0082 | 0.0235
3 42076 | 0.0082 | 0.0231 | 0.0083 | 0.0255
4 85816 | 0.0081 | 0.0268 | 0.0082 | 0.0299
5 169344 | 0.0085 | 0.0283 | 0.0087 | 0.0329
6 328852 | 0.0075 | 0.0433 | 0.0084 | 0.0361
7 644252 | 0.0087 | 0.0419 | 0.0085 | 0.0420
8 | 1261324 | 0.0088 | 0.0720 | 0.0079 | 0.0327

Spheroid B [oull | W&l | lall | [Io]]
10486 | 0.0019 | 0.0049 | 0.0028 | 0.0064
10486 | 0.0036 | 0.0074 | 0.0036 | 0.0076
44180 | 0.0017 | 0.0040 | 0.0021 | 0.0063
44180 | 0.0032 | 0.0060 | 0.0029 | 0.0063
88124 | 0.0038 | 0.0074 | 0.0038 | 0.0123

174530 | 0.0039 | 0.0077 | 0.0037 | 0.0085
355243 | 0.0041 | 0.0088 | 0.0051 | 0.0204
714224 | 0.0039 | 0.0090 | 0.0044 | 0.0106

1476190 | 0.0048 | 0.0111 | 0.0059 | 0.0362
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order to obtain correct asymptotic approximation for the
field on Spheroid A at the highest numerically accessible
frequency (A = 277/2 m) for the incidence at 10°, the num-
ber of modes, which have been taken into account has been
increased to 20. For all the other cases it was set equal to
10.

5 Conclusions

The comparison has shown that the difference between the
surface fields calculated using the MLNG-based solver and
the asymptotic approximation is generally within 1% in
the integral norm if only the absolute values are compared
and about twice as large if the phases are also taken into
account. Most of this deviation is due to the numerical
noise caused by the use of zero-order basis functions in the
MLNG-based solver, which proved to be about 1%. This
fairly good agreement demonstrates the accuracy of both
methods and, in particular, provides a nontrivial validation
for the MLLNG-based solver, which in turn supports its ap-
plication to a much wider class of scatterers.
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