B. Censier

Front-end adaptive electronic modeling with neural networks for radioastronomy

B. Censier

USN Nançay (Nançay radioastronomy station, France)/CNRS

URSI2020 (07/2020)

Context

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Front-end adaptive electronic modeling with neural networks for radioastronomy

B. Censier

• S-AAIR project, Nançay microelectronic team

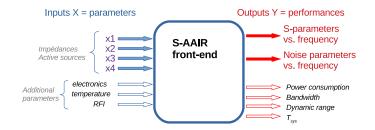
(Smart Aperture Array Integrated Receiver)

- Goals:
 - adapt front-end performances to each type of observation
 - ultimate goal : trade-off beween required performances and energy consumption
 - especially interesting for generalist telescopes with very wide range of constraints depending on observation
- Hardware:
 - adptative front-end via controllable impedances and active sources

B. Censier

Direct and inverse modeling

- direct modeling: predict performances given input parameters
- inverse modeling: predict optimal input parameters for a given set of performances contraints



イロト 不得下 イヨト イヨト

э

B. Censier

Constraints and Requirements

- Compute the optimal input parameters with respect to the desired performances
 - fast enough for regular updates
 - with 1% / 0.1 dB max error
 - \Rightarrow needs fast and precise modeling
 - \Rightarrow on a complex system (non linearity and dimensionality)
 - \Rightarrow able to cope with both measurements and simulation data

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

 \Rightarrow Neural networks

B. Censier

Neural networks in short

- machine learning paradigm: the model is "learnt" based on inputs data that the network is feed with
- one neuron = linear combination of inputs with weights + thresholding by a non linear function
- neural network: set of interconnected neurons
- training step:
 - weights are adjusted by an optimization method over the whole network
 - optimization runs until a sufficient convergence between network inputs and test data is obtained
- here use of feedforward networks: one input layer, one output layers, several "hidden" layers in between, 2 adjacent layers fully connected

B. Censier

Data and framework

- direct model:
 - 4 inputs electronic parameters on 4 bits (0-15)
 - S-parameters vs. frequency (12 subbands) as performance output
- inverse model:
 - 5 constraints on S-parameters as input
 - 4 optimal parameters w.r.t constraints as output
- this first study based on ADS simulation of a 2-stage S-AAIR front-end
 - 65536 (2**16) simulated samples for 4 parameters on 4 bits
 - 14040 samples after selection S21>0dB, S11<-10dB and S22<-10dB
- eventually hypothesis-free modeling based on measurements only

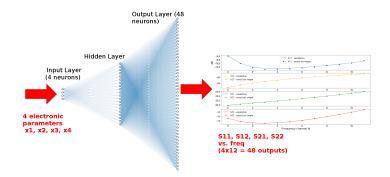
B. Censier

Data and framework

- every results with python scripts on a regular laptop
- 2 libraries tested:
 - pybrain: first tests, simple and not maintained anymore, easy to set up but lack of fine grain tuning
 - tensorflow (2.0): large user base, most used in state of the art machine learning, more complex to use but extended possibilities
 - pybrain was for prototyping, tensorflow revealed much more efficient (speed + convergence with multilayers (i.e. deep learning))

B. Censier

Direct modeling: network

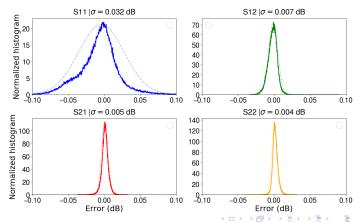


- 4 input neurons = 4 input electronic parameters
- 48 output neurons = 4 S-parameters in 12 subbands each (500-1500MHz)

B. Censier

Direct modeling: results

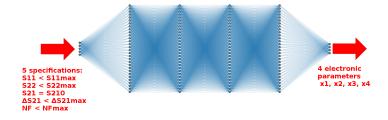
- first tests: single 60 neurons hidden layer with pybrain
 - tens of minutes training
 - RMS error < 0.1dB for S21,S22,S12, $<\!0.5dB$ for S11
- second tests: 5 hidden layers with 60 neurons each on tensorflow
 - few hours training
 - RMS error < 0.1 dB for all S parameters



B. Censier

Inverse modeling: network

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ



- 5 input neurons for 5 constraints on S-parameters
- 4 output neurons for 4 optimal parameters w.r.t. input constraints

B. Censier

Inverse modeling: method

- inverse modeling main difficulty: non unicity of solutions (several possible outputs for a given inputs)
- naive method: exchange electronic parameters (become outputs) and S-parameters constraints (become inputs) during training
 - does not converge, or towards a model where multiple solutions are averaged and thus inaccurate
- our method:
 - precompute a loss function representing the set of constraints (weighted by importance):
 - Loss(x1, x2, x3, x4) =
 - $10 \times \delta S22 \max + 1000 \times \delta S11 \max + 10 \times \delta S21 + 100 \times \delta NFmax$

- precompute the minimum value of the loss function for all possible constraints
- train the neural network on the precomputed dataset

B. Censier

Inverse modeling: results

- Already reach a satisfying system using pybrain
- 4 hidden layers, 30 neurons each
- optimal parameters between 0 and 15 are reproduced without error when compared to the precomputed optimization function

B. Censier

Conclusion and perspectives

- Neural network are a valid tools for such complex systems with crucial modeling needs
- already feasible on personal computing resources
- training step from minutes to hours depending on the accuracy needed and the training data volume
- execution time once trained is dramatically lower compared to traditional simulation/optimization schemes (few micro seconds vs. few hours)

B. Censier

Conclusion and perspectives

- inverse modeling:
 - non unicity problem can be bypassed using precomputed optimization
 - but optimal solutions should be computed directly during training
 - interesting tool for inverse problems in general
 - need to test other topologies that could cope with non unicity:
 - statistical (variationnal autoencoder), invertible (invertible networks)...
- further tests on measurements data only
- neural network design is essentially based on trial/error process
- (optimal number of layers, neurons, inter connections...)
 - this design could itself be automatized using genetic-like algorithm to explore possible topologies and select the most adapted ones.