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Context

• S-AAIR project, Nançay microelectronic team

(Smart Aperture Array Integrated Receiver)

• Goals:
• adapt front-end performances to each type of observation
• ultimate goal : trade-o� beween required performances and

energy consumption
• especially interesting for generalist telescopes with very wide

range of constraints depending on observation

• Hardware:
• adptative front-end via controllable impedances and active

sources
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Direct and inverse modeling

• direct modeling: predict performances given input parameters

• inverse modeling: predict optimal input parameters for a given
set of performances contraints
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Constraints and Requirements

• Compute the optimal input parameters with respect to the
desired performances

• fast enough for regular updates
• with 1% / 0.1 dB max error

⇒ needs fast and precise modeling
⇒ on a complex system (non linearity and dimensionality)
⇒ able to cope with both measurements and simulation data

⇒ Neural networks
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Neural networks in short

• machine learning paradigm: the model is "learnt" based on
inputs data that the network is feed with

• one neuron = linear combination of inputs with weights +
thresholding by a non linear function

• neural network: set of interconnected neurons

• training step:
• weights are adjusted by an optimization method over the whole

network
• optimization runs until a su�cient convergence between network

inputs and test data is obtained

• here use of feedforward networks: one input layer, one output
layers, several "hidden" layers in between, 2 adjacent layers fully
connected
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Data and framework

• direct model:
• 4 inputs electronic parameters on 4 bits (0-15)
• S-parameters vs. frequency (12 subbands) as performance

output

• inverse model:
• 5 constraints on S-parameters as input
• 4 optimal parameters w.r.t constraints as output

• this �rst study based on ADS simulation of a 2-stage S-AAIR
front-end

• 65536 (2**16) simulated samples for 4 parameters on 4 bits
• 14040 samples after selection S21>0dB, S11<-10dB and

S22<-10dB

• eventually hypothesis-free modeling based on measurements only
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Data and framework

• every results with python scripts on a regular laptop

• 2 libraries tested:
• pybrain: �rst tests, simple and not maintained anymore, easy to

set up but lack of �ne grain tuning
• tensor�ow (2.0): large user base, most used in state of the art

machine learning, more complex to use but extended possibilities
• pybrain was for prototyping, tensor�ow revealed much more

e�cient (speed + convergence with multilayers (i.e. deep
learning))
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Direct modeling: network

• 4 input neurons = 4 input electronic parameters

• 48 output neurons = 4 S-parameters in 12 subbands each
(500-1500MHz)
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Direct modeling: results
• �rst tests: single 60 neurons hidden layer with pybrain

• tens of minutes training
• RMS error < 0.1dB for S21,S22,S12, <0.5dB for S11

• second tests: 5 hidden layers with 60 neurons each on tensor�ow
• few hours training
• RMS error < 0.1 dB for all S parameters
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Inverse modeling: network

• 5 input neurons for 5 constraints on S-parameters

• 4 output neurons for 4 optimal parameters w.r.t. input
constraints
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Inverse modeling: method

• inverse modeling main di�culty: non unicity of solutions (several
possible outputs for a given inputs)

• naive method: exchange electronic parameters (become outputs)
and S-parameters constraints (become inputs) during training

• does not converge, or towards a model where multiple solutions
are averaged and thus inaccurate

• our method:
• precompute a loss function representing the set of constraints

(weighted by importance):
Loss(x1, x2, x3, x4) =
10× δS22max + 1000× δS11max + 10× δS21+ 100× δNFmax

• precompute the minimum value of the loss function for all
possible constraints

• train the neural network on the precomputed dataset
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Inverse modeling: results

• Already reach a satisfying system using pybrain

• 4 hidden layers, 30 neurons each

• optimal parameters between 0 and 15 are reproduced without
error when compared to the precomputed optimization function
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Conclusion and perspectives

• Neural network are a valid tools for such complex systems with
crucial modeling needs

• already feasible on personal computing resources

• training step from minutes to hours depending on the accuracy
needed and the training data volume

• execution time once trained is dramatically lower compared to
traditional simulation/optimization schemes (few micro seconds
vs. few hours)
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Conclusion and perspectives

• inverse modeling:
• non unicity problem can be bypassed using precomputed

optimization
• but optimal solutions should be computed directly during

training
• interesting tool for inverse problems in general

• need to test other topologies that could cope with non unicity:
• statistical (variationnal autoencoder), invertible (invertible

networks). . .

• further tests on measurements data only

• neural network design is essentially based on trial/error process

(optimal number of layers, neurons, inter connections. . . )

• this design could itself be automatized using genetic-like
algorithm to explore possible topologies and select the most
adapted ones.


