Comparative Study of Computational Electromagnetics Applied to Radiowave Propagation in Wildfires

Instituições Associadas

universidade de aveiro

altice

NOKIA

UNIVERSIDADE BEIRA INTERIOR

U.PORTO

ISCTE 💮 IUL

Stefânia Faria¹, Mário Vala¹, Pedro Coimbra^{1,3}, João Felício^{1,3,4}, Nuno Leonor^{1,2}, Carlos Fernandes^{1,3}, Carlos Salema^{1,3} and Rafael Caldeirinha^{1,2}

¹ Instituto de Telecomunicações, Portugal
 ² Instituto Politécnico de Leiria, Leiria, Portugal
 ³ Instituto Superior Técnico, Lisboa, Portugal
 ⁴ Centro de Investigação Naval, Escola Naval, Almada, Portugal

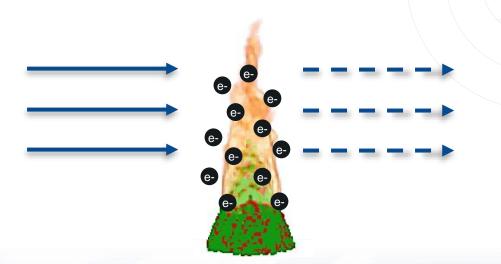
instituto de telecomunicações

© 2020, Instituto de Telecomunicações

Summary

- Introduction
- Modelling of radiowave propagation in fire
 - Fire dynamics
 - Cold Plasma Model
- Comparative study of computational electromagnetics
 - Full-stack technique
 - Transmission Line Model
 - Full-wave analysis
 - Comparative analysis
- Conclusions

Introduction


- Besides fauna and flora damages caused by wildfires, fires may also affect emergency communication systems;
- In 2017, the region of Pedrógão Grande in Portugal was affected by deadly wildfires and the Portuguese rescue communication network failed to assist forest fire victims.
- Since the 60's decade, fire fighters have testified the radio-wave propagation fragility all around the world;

One way to describe signal attenuation in wildfires is considering the Cold Plasma Model (CPM);

• Estimation of electron density:

$$N_e = (K_1 N_a)^{\frac{1}{2}} \left[\left(1 + \frac{K_1}{4N_a} \right)^{\frac{1}{2}} - \left(\frac{K_1}{4N_a} \right)^{\frac{1}{2}} \right] [m^{-3}] \quad (1)$$

$$K_{1} = 2\frac{g_{i}}{g_{0}}\frac{2\pi m k T^{\frac{3}{2}}}{h^{3}}e^{-\frac{eV_{i}}{kT}}$$
(2)

$$N_a = n_0 + n_e = 7.335 \times 10^{27} \frac{\xi}{T} [m^{-3}] \quad (3)$$

• Estimation of effective collision frequency:

$$v_{eff} = \frac{8}{3\sqrt{\pi}} N \left(\frac{m_e}{2kT_e}\right)^{\frac{5}{2}} \int_0^\infty v^5 Q^{(m)}(v) e^{-\left(\frac{m_e v^2}{2kT_e}\right)} dv \quad (4)$$

$$\bigcup$$

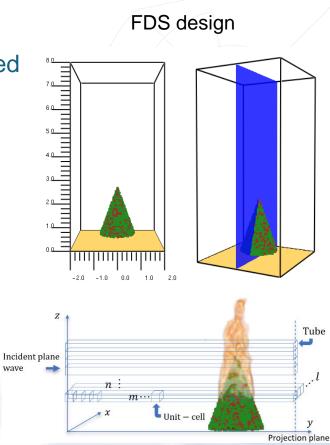
$$v_{eff} = 7.33 \times 10^3 N_m a^2 \sqrt{T} [s^{-1}] \quad (5)$$

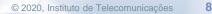
• Relative permittivity:

$$\varepsilon_{r} = \left[1 + \frac{\omega_{P}^{2}}{\omega(i\nu_{eff} - \omega)}\right] \quad (6)$$
$$\omega_{P}^{2} = \frac{N_{e}e^{2}}{m\varepsilon_{0}} \quad (7)$$
$$\omega = 2\pi f \quad (8)$$

• Propagation constant:

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu_0\varepsilon_0\varepsilon_r} \quad (9)$$


TÉCNICO LISBOA

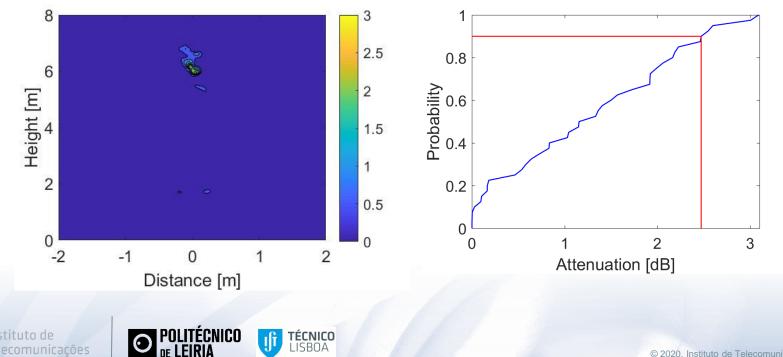

- Fire Dynamics Simulator (FDS) was used to model a fire scenario of a single tree over time.
- Parameters of a 30 s simulation:
 - Eucalyptus Diversicolor tree
 - K=0.9%, Ca=0.82% and Mg=0.28%
 - 385 MHz plane wave normally incident
 - Volumetric mesh of 5 cm cells

TECNICO

ÉCNICO

• 80 slice divisions

- Results obtained from CPM model are used as input parameters to 4 different approaches:
 - Full-Stack Model (FSM);
 - Transmission Line Model (TLM);
 - Finite-Difference Time-Domain (FDTD);
 - Commercial CST electromagnetic transient solver.

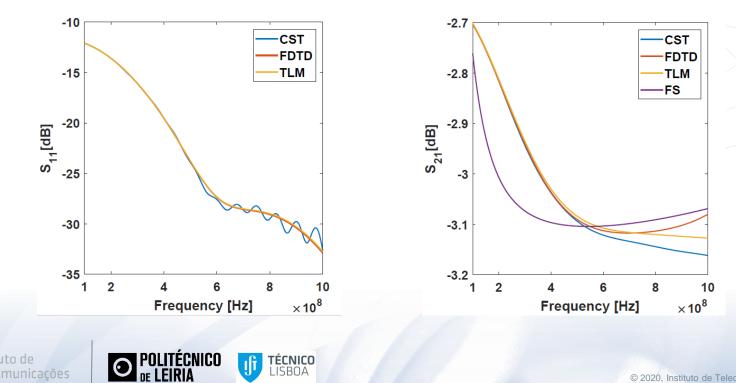


• Full-Stack Model (FSM)

DF

- Transmission Line Model (TLM)
 - TLM is based on impedance matching in multiple dielectric slabs, in which propagation and marching matrices are calculated, so that incident and reflected fields are considered at each unit-cell interface.
 - Total attenuation [in dB] on a per-tube analysis is in very good agreement with FSM.
 - The study of the CDF of the ROI was also performed, yielding a 2.42 dB of peak excess loss for 90% probability of occurrence, with a difference of only 0.05 dB to FSM.

• Full-wave analysis


- Finite-Difference Time-Domain (FDTD)
- Commercial CST electromagnetic transient solver

Comparative analysis

Comparative analysis

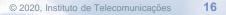
	Number of tubes	Method			
		TLM	СЅТ	FDTD	FS
S ₁₁ (dB)	1	-18.95	-18.91	-18.97	N/A
	4	-20.5	-20.65	-20.54	N/A
S ₂₁ (dB)	1	-3.019	-3.027	-3.024	-3.094
	4	-2.271	-2.295	-2.278	-2.337
	ROI (90% prob.)	-2.42	N/A	N/A	-2.47
Computational time (s)	1	<6	<30	600	0.005

Conclusions

- This study clearly indicates that the effect of fire may dictate the reliability of the radio communications in critical mission applications;
- Signal attenuation in wildfires can be estimated by the cold plasma model (CPM), which was used to obtain the complex permittivity across the fire scenario;
- The complex permittivity allowed then to obtain the total attenuation of each tube on a projection plane, for four different methods.

Acknowlegment

 This work is part of the project RESCuE-TOOL (PCIF/SSI/0194/2017) and UID/EEA/50008/2019, both funded by the Portuguese government, Portuguese Foundation for Science and Technology (FCT).



TÉCNICO LISBOA

ſ

