

Maarouf Al Hajj

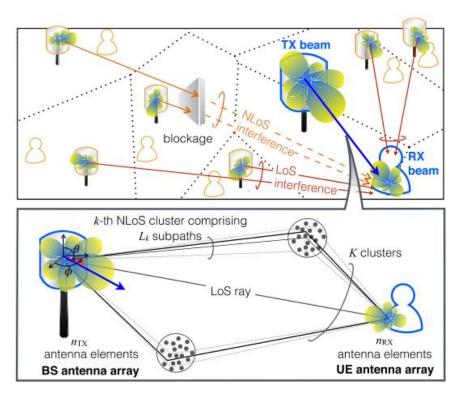
Chaire C2M, Télécom Paris, Paris, France

17-Oct-2019

Why massive MIMO

- To account for the growing need for spectrum 5G and future networks will use mmWave frequencies
- mmWave is different than RF bands by having much higher path loss
- One of the main solutions to maintain an acceptable SNR is to increase the Tx gain using massive MIMO antennas
- Massive MIMO antennas will have varying radiation patterns which makes them hard to model

- Exposure assessments are performed by manufacturers and operators to ensure that emitting devices are compliant with safety regulations
- Many methods exist for older systems, but they are not accurate for future systems due to the fundamental differences
- We aim to derive an analytical approach to estimate the downlink exposure in 5G massive MIMO networks


We assume a homogenous 5G massive MIMO network

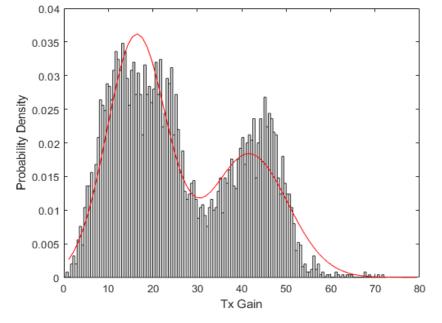
- The BSs and the UEs are independently distributed in a 2D plane
- The BSs transmit independently from each other in full-buffer mode
- We assume no downlink power control exist in the network, which seems the case for 5G networks

System Model

- We use the NYUSIM channel model which divides the Tx power into clusters and paths
- The Rx power is dependent on the transmitted power, the propagation distance, the channel gain and the antenna gain
- We use the isotropic antenna radiation model for simplicity

M. Rebato, J. Park, P. Popovski, E. De Carvalho, and M. Zorzi, "Stochastic geometric coverage analysis in mmWave cellular networks with a realistic channel model," in Proc. IEEE Global Commun. Conf. Mobile Wireless Netw. (Globecom MWN), Singapore, Dec. 2017, pp. 1

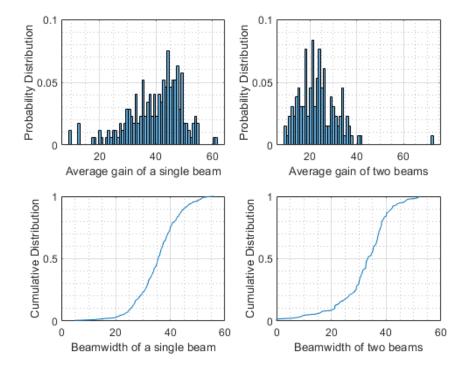
- We separate the two gains obtained from the channel simulation into channel gain and antenna gain
- Channel gain obtained directly from the NYU channel simulation
- Antenna gain obtained by determining the antenna radiation pattern for every scanning angle after each channel simulation
- Running a large number of simulations, we have empirically fit the distributions of the gain components into statistical models


Gain Distribution

The two peaks likely due to side lobes in the antenna pattern

Fitted distribution: Multimodal normal distribution

$$y = p \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-0.5(\frac{x-\mu_1}{\sigma_1})^2} + (1-p) \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-0.5(\frac{x-\mu_2}{\sigma_2})^2}$$


 $p, \sigma_1, \sigma_2, \mu_1, \mu_2$ have the respective values [0.6, 16.35, 41.67, 6.68, 8.63]

Gain Distribution

- We fit separate distributions for each case of single or multi-user usage
- We deduce the half-power beamwidth and the gain as the average value for the ISO antenna pattern.
- In the figure, The gain and HPBW distributions for single user MIMO and 2-beam configuration

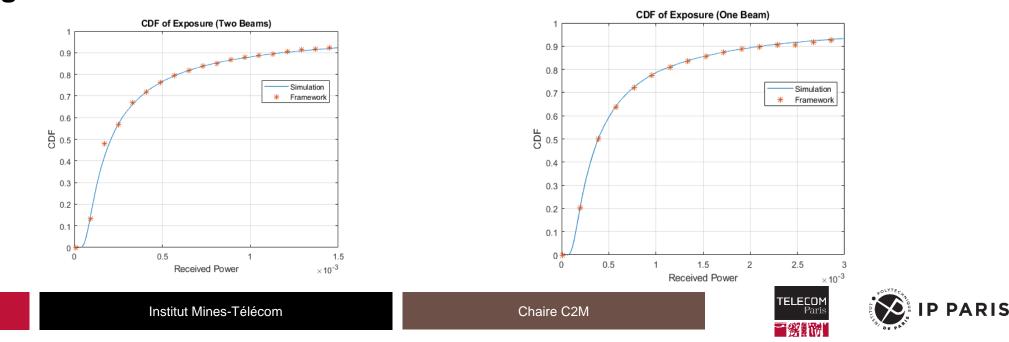
8

Analytical Formulation

Exposure characteristic function:

$$\begin{split} \phi(t) &= E \left\{ \exp\left(jt \sum_{r_i \in \phi_{BS}} P_{tx} G_{tx} r^{-\alpha}\right) \right\} \\ &= \exp\left(-2\pi\lambda BW \ G \ P_G \ \frac{jt P_{tx} G \bar{\gamma} m^{2-\alpha}}{\alpha - 1} \ _2F_1\left(1, \frac{\alpha - 2}{\alpha}, 2 - \frac{2}{\alpha}, \qquad jt P_{Tx} G \ BW \ P_G \ \bar{\gamma} m^{-\alpha}\right) \right) \end{split}$$

Where, α is the path loss exponent, BW is the beamwidth, λ is the PPP intensity, G is the average gain, P_{tx} the transmit power, and m the minimum separation distance between the BS and the user to avoid infinite values at distance 0.



Results

The CDF of the exposure can be determined using the Gil-Peleaz theorem: $F(x) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{Im[e^{-jtx}\varphi(t)]}{t} dt$

We compare the analytical results with monte-carlo simulations in the figures below

Conclusion

- In this paper, we have presented an accurate framework to analytically estimate the exposure in a massive MIMO network
- We have also made the comparison between two simple implementation cases of a massive MIMO antenna which can have significant effect on the exposure
- Future work will focus on producing more accurate and representative model and study the effect of change in the network characteristics

