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Abstract

The detrimental effects of phase errors due to improperly
selected reception spheres in unidirectional ray-tracing are
demonstrated. The phase errors, which arise from incorrect
ray path length calculations, are diminished by a bidirec-
tional ray-tracing approach in combination with an asymp-
totic approximation. The evaluation of the reciprocity inte-
gral in the conventional bidirectional ray-tracing approach
is reduced into an algebraic expression, which involves the
values of the integrand and its derivatives at a stationary
phase point. The stationary phase point is found by utiliz-
ing the Fermat principle of least time where the trajectory
of the ray path with shortest length is calculated. Thus, the
path length calculation is performed in a much more accu-
rate manner. Numerical results show the advantages of the
approach.

1 Introduction

Ray-tracing has recently become the standard simulation
tool for many applications in electromagnetics, as the emer-
gence of massively parallel computation paradigms on
Graphics Processing Units (GPUs) has enabled fast calcula-
tions with decent accuracy [1, 2]. In general, the main goal
of the simulation is to compute the antenna transfer function
for a transmitter and a receiver antenna where the geometry
is usually much larger than the wavelength. The simula-
tions rely on high-frequency approximations such as Ge-
ometrical Optics and Uniform Theory of Diffraction (GO-
UTD), and a Shooting and Bouncing Rays (SBR) algorithm
is commonly utilized for identifying the feasible ray paths
[3, 4]. In SBR-based simulations, usually a large number
of rays are launched from the transmitter site and traced
throughout the geometry. The rays, which intersect with the
so-called reception sphere at the receiver site, are processed
further to calculate the field expressions and the transfer
function. Such an approach has usually considerable bene-
fits in complex scenarios, compared to the alternatives such
as the image method.

Despite their numerous advantages, SBR-based approaches
in the traditional unidirectional ray-tracing may lead to sig-
nificant accuracy issues under certain circumstances. More
specifically, the size of the reception spheres and the num-
ber of the ray launches should be simultaneously fine-tuned
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Figure 1. Illustration of the ray path length differences for a
small/large number of ray launches and accordingly chosen re-
ception sphere sizes. The errors are likely to be more drastic for
llos and lre f than l̃los and l̃re f

in order to prevent incorrect ray contributions as well as ray
misses (i.e., a correct ray path does not hit the sphere and
remains undetected). Such an objective usually implies that
the number of ray launches is large and the size of the recep-
tion sphere is small. Increasing the number of ray launches
may not always be practical though, due to the growth in the
computation time, which might be exponential if diffrac-
tions are also involved in the simulations [5]. Therefore,
utilizing relatively large spheres with a small number of
ray launches might be convenient in many practical cases.
Nevertheless, choosing the sphere size inappropriately may
have further implications in the millimeter-wave regime and
beyond, as the lengths of the ray paths might be computed
inaccurately. Hence, the phase of multipath contributions
may become erroneous if the reception spheres are large
compared to the wavelength. Consequently, the accuracy
of the transfer function may deteriorate.

The implications of improper parameter selections regard-
ing incorrect ray contributions and misses have been pre-
viously acknowledged in various studies [6]. However, the



phase errors which arise in higher frequencies have not been
adequately addressed in the literature. Therefore, in this
study, the accuracy issues related to the conventional recep-
tion sphere approach are considered where phase errors in
the millimeter-wave regime are demonstrated. A remedy
for the issue is provided by the bidirectional ray-tracing
method. The integration algorithm, which was utilized in
the traditional bidirectional ray-tracing approach [6], has
been changed to treat millimeter-wave scenarios in a more
efficient way. The approach is based on the asymptotic ex-
pansion of the reciprocity integral and utilizes the Fermat
principle of least time where the properties of the exact rays
(i.e., the rays which precisely hit the receiver location) are
predicted on an interaction surface. Thus, the path length
computation can be carried out much more accurately. A
detailed description of the method is presented in [7].

2 Identifying the Exact Ray Paths

Identifying the exact ray paths in a ray-tracing simulation
can be considered as a minimization problem in accordance
with the Fermat principle of least time, which states that a
ray follows the shortest possible path between two points
[8]. Based on this information, we now consider a sur-
face Ψ, which separates two antennas, namely, A and B,
in a free-space environment. Assuming that a bidirectional
ray-tracing procedure has been applied in this scenario, the
properties of the wavefronts from both A and B are known
on Ψ. Using the knowledge about the wavefronts it is possi-
ble to compute the lengths of the paths, which link A and B,
on the surface Ψ. The point, where the path length is mini-
mal, can be considered as a stationary point and it is essen-
tially the intersection point of the feasible ray path and the
surface Ψ. Note that in a case with scatterers present in the
environment, multiple stationary phase points may occur
on Ψ. Here, the surface Ψ is assumed to be large enough to
sufficiently separate A and B, though closed surface config-
urations can also be used in many cases. The minimization
process can be considered as a convex optimization prob-
lem in general, therefore, many different solution methods
are available. A minimization algorithm based on a line-
search method is described in [7].

3 Calculation of Antenna Transfer Function

Once the trajectory of the exact ray paths have been iden-
tified on the interaction surface Ψ, the transfer function
can be computed by evaluating the reciprocity integral. As
stated previously, the evaluation of the reciprocity integral
is based on a much more efficient technique, compared to
that considered in [6], and helps to diminish the computa-
tion time at high frequencies.

3.1 Reciprocity Integral in Oscillatory Inte-
gral Form

Recalling the previously considered antenna configuration,
let A be a receiver and B be a transmitter. The transfer func-

Figure 2. Illustration of stationary point identification approach.
Among the ray pairs which emanate from A and B, those which
are marked as green yield the path with shortest length. The in-
tersection point of these rays with the surface Ψ is the stationary
point.

tion H for this scenario can be written as

H =
−1

IAV gen
B

‹
Ψ

[(HA×EB)− (HB×EA)] ·dS, (1)

where IA is the port current at antenna A, V gen
B is the gen-

erator voltage at antenna B, and EA, EB, HA, HB are elec-
tric and magnetic fields from A and B with a suppressed
time dependency of e jωt , respectively. The surface integral
term in (1) can be expressed in an oscillatory integral form,
which is given by
‹

Ψ

[(HA×EB)− (HB×EA)] ·dS =

¨
Ψ

f (r)e jkg(r)dS,

(2)

with

α(r) =
[
(HA(r)×EB(r))− (HB(r)×EA(r))

]
· n̂,

f (r) = ||α(r)||, g(r) =
arg(α(r))

k
, (3)

where f and g are the magnitude and phase functions, re-
spectively. Various numerical integration methods can be
employed to evaluate such an integral, however, many con-
ventional techniques might be extremely time consuming
if the operating frequency is at or beyond millimeter-wave
regime [9, 10]. In order to address this issue, an asymptotic
approach is used in this study.

3.2 Asymptotic Expansion for the Oscilla-
tory Integral

The result of the oscillatory integral given in Eq. (2) is
strongly dependent on the values of f and g as well as their
derivatives at certain points lying on Ψ. If there is a point
r0 ∈ Ψ such that ∇g(r0) = 0, it is a stationary phase point
and the integral result can be given by [11]

I ∼ 2π f (r0)

k
√

det(Hess(g(r0)))
e jkg(r0)+ jπ/4 +O(k−1), (4)



Figure 3. Two-ray ground reflection scenario illustration

as k → ∞. Note that the condition ∇g(r0) = 0 indicates
that the corresponding path length is minimal. As the phase
function g is mostly dependent on the lengths of the ray
paths, r0 can also be associated with the definition of a sta-
tionary point which was previously given. In other words,
r0 denotes the point where the feasible ray (having mini-
mum path length) intersects with Ψ. The error term O(k−1)
indicates that the accuracy of this technique typically in-
creases with the frequency. The propagation direction vec-
tors for the fields originating from A and B have opposite
directions at r0 in general. This provides a verification op-
portunity for the minimization problem, i.e., the validity of
the minimum can be confirmed by checking the inner prod-
uct of the propagation direction vectors, which should be
equal to -1 (assuming that they are normalized).

In certain scenarios, where ∇g(r0) = 0 may not be satisfied,
the asymptotic expansion given in Eq. (4) is no longer valid.
In such cases, the integral evaluation can be performed ac-
cording to the method given in [6].

4 Numerical Results

A two-ray ground reflection scenario, which is illustrated in
Fig. 3, is simulated for 5 different frequencies from 5 GHz
to 25 GHz. The path gain for three different receiver loca-
tions is investigated and the deviation from the reference is
analyzed. The ground plane is assumed to be PEC. In the
unidirectional ray-tracing simulations, a reception sphere
with a radius of 0.12 m (corresponding to 2λ distance at
5 GHz) is utilized whereas in the bidirectional ray-tracing
case, a cubic interaction surface, which encloses the re-
ceiver and has a side length of 8 m, is used. Note that the
size of the interaction surface is much larger than the recep-
tion sphere, and the electrical size of both objects increases
as the frequency increases. In both cases, the same num-
ber of ray launches were considered, which is 30 000. The
results are shown in Fig. 4.

The results indicate that the phase errors are indeed encoun-
tered if a fixed-size reception sphere is utilized under vary-
ing frequency conditions. Even though the error does not
increase monotonically, deviations are likely to occur if the
reception sphere is electrically large. Note that the number
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Figure 4. Two-ray ground reflection simulation results

of the multipaths is limited to 2 here, i.e., line-of-sight path
and ground reflection path, but it can be argued that the er-
ror may grow even further if more scatterers, hence more
rays, exist in the scenario. On the other hand, the bidirec-
tional ray-tracing based on asymptotic integration does not
exhibit such a deviation, even at higher frequencies. Thus,
it can be stated that the proposed method yields better ac-
curacy than the conventional unidirectional ray-tracing for
millimeter-wave regime, when the number of ray launches
are equal. The reception sphere size in unidirectional ray-
tracing should ideally be adjusted with respect to the wave-
length, however, this may not always be feasible since the
number of ray launches will be accordingly large. For such
situations, the proposed method is a viable alternative.

5 Conclusion

The phase errors, which emerge at millimeter-wave unidi-
rectional ray-tracing simulations, were characterized where
the utilized reception sphere size was kept constant un-
der varying frequencies. A solution of the problem was
provided by a bidirectional ray-tracing method based on
asymptotic expansion of the involved reciprocity integral.
The solution of the integral was given by the utilization of
a stationary phase point, which lies on the exact ray path
connecting the receiver and the transmitter. Using the Fer-



mat principle of least time, the stationary phase point can be
obtained on an interaction surface and also the integral can
be evaluated by a single algebraic expression. The numeri-
cal results have shown that phase errors are encountered in
unidirectional ray-tracing simulations when the sphere ra-
dius is electrically large, though, the error may not always
increase with frequency. The proposed approach exhibits
a much better performance as the deviation from the refer-
ence is very small.
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