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Abstract

The covariance structure of temporal moments for stochas-

tic multipath channel models are derived in closed from.

The obtained expression shows the importance of both the

arrival rate and the second factorial intensity function of the

point process describing the multipath model.

1 Introduction

Stochastic multipath models are widely used in the commu-

nication community to analyse and simulate various system

aspects considering wideband channels. The delay disper-

sion due to a wideband channel is commonly characterised

by use of the rms delay spread and thus distributions of rms

delay spread are commonly reported in measurement and

simulation studies. [1]. The rms delay spread is defined

based on the first three raw temporal moments.

For stochastic multipath models, the temporal moments are

random variables with mean value and covariances. The

means of temporal moments, are given by the power delay

spectrum and are simple to derive [2]. However, general

expressions for the covariance of temporal moments have

to the author’s knowledge not been published.

Recently, a multivariate log-normal for the temporal mo-

ments was found to represent two sets of measurement data

well [3]. The log-normal model is easy to fit to multivariate

data, as it is fully specified by the mean and covariances.

Thus to apply such a log-normal model the mean and co-

variances of the temporal moments should be known. Tem-

poral moments have recently been applied in calibration of

stochastic multipath models [4, 5] eliminating the need for

multipath extraction. For this application, statistical charac-

terization is relevant for deriving parameter estimators and

evaluating their accuracy.

In the present contribution, we derive a general expres-

sion for the covariance of arbitrary temporal moments for

stochastic multipath models. The general expression is then

applied to the model by Turin et al. [6]. Turin’s model is has

the taken as building block for numerous stochastic channel

models including those by Saleh-Valenzula, Spencer and

several recent works including [7, 8, 2]. Despite its impor-

tance and simplicity, the literature holds surprisingly few

results on properties of Turin’s model. In particular, we

have not been able to find published result on the covari-

ances of temporal moments for this model. Therefore, we

derive these in the following first for general setting and

then for specific room electromagnetic setting of the model.

2 Stochastic Multipath Models

The instantaneous (unnormalized and uncentered) temporal

moment of order i is defined as

mi =
∫ ∞

0
|y(τ)|2τ idτ, (1)

where y(t) denotes the complex baseband representation of

the received signal. In a multipath model, the received sig-

nal is a superposition of signal components thought of as

arriving via multiple distinct paths.

y(t) = ∑
x∈X

αxs(t − τx). (2)

where x denotes the pair (τx,αx) of delay τx and complex

gain αx. The countable, but possibly infinite, collection of

pairs X = {x1,x2,x3, . . .} is a marked point process with

(unordered) points {τx} and associated marks {αx}. The

intensity function, or arrival rate, is denoted by λ (t). The

above formulation is not limited to models that were formu-

lated as marked point processes, for example the models [6]

and [9], but is more widely applicable to multipath models

[10, 11, 2]. The point process formulation simplifies deriva-

tion by use of theorems from the rich literature on stochastic

geometry [12, 13, 14].

Assuming the complex gains to be uncorrelated random

variables, i.e. the uncorrelated scattering (US) assumption,

the second moment of the received signal can be written in

terms of the delay power spectrum P(t) as

E[|y(τ)|2] =
∫ ∞

−∞
P(τ − t)|s(t)|2dt. (3)

The delay power spectrum can be obtained as a product of

the arrival rate λ (τ) and the conditional second moment of

the complex gains σ2
α(τ) = E[|α|2|τ], i.e.

P(τ) = σ2
α(τ)λ (τ). (4)

For causal models, λ (τ) = 0 and thus P(τ) = 0 for τ < 0.



The temporal moments simplify if the duration of the trans-

mitted signal is short, i.e. |s(t)|2 approaches a Dirac delta

impulse. Under this high-bandwidth assumption,

mi =
∞

∑
k=0

|αk|2τ i
k, i = 0,1,2, . . . (5)

The temporal moments of a stochastic model are joint ran-

dom variables with mean and covariances.

3 Mean and Covariance of Temporal Mo-
ments

The mean and covariance of the temporal moments, can be

computed For the derivation we draw upon tools from the

theory of point processes, in particular the Campbell theo-

rem. The reader is referred to [12, 13, 14] for details on the

point processes.

Under the US assumption, Campbell’s theorem gives the

wellknown result for the mean,

μi = E[mi] =
∫

σ2
α λ (t)tidt =

∫
P(t)tidt, i = 0,1,2, . . .

(6)

Thus the power delay spectrum specifies the means of all

the temporal moments.

To derive the covariance structure we start from

σi j = E[mim j]−μiμ j. (7)

Applying the law of total expectation leads to

E[mim j] = E

[
∑
x,x′

A(τx,τx′)τ i
x ·τ j

x′

]
(8)

where the fourth moments of the complex gains enter in the

function A(τx,τx′) = E[|αx|2|αx′ |2|τx,τx′ ]. The double sum

in (8) contains “diagonal” and “cross” terms. The expecta-

tion of the diagonal terms follows by Campbell’s theorem

E

[
∑
x

A(τx,τx)τ i+ j
x

]
=

∫
A(τ,τ)τ i+ jdτ . (9)

The expectation of the sum of cross terms can be carried

out using the second order Campbell formula as

E

[
∑

x �=x′
A(τx,τx′)τ i

x ·τ j
x′

]
=

∫∫
A(τ,τ ′)λ (2)(τ,τ ′)τ iτ ′ jdτdτ ′.

(10)

where λ (2)(τ,τ ′) is the so-called second order factorial in-

tensity function of the arrival time point process.

The above result can be used to compute the covariance

of the temporal moments for any model where the fourth

moment structure of the gains and the second order facto-

rial intensity are known. The following example shows the

derivation for the specific case of an Turin’s model.

4 Application to Turin’s Model

In the most general setting, Turin’s model [6] can be formu-

lated as an independently marked Poisson process X . The

arrival time process is a Poisson process. The the arrival

rate λ (τ) and conditional mark density p(α|τ) can be de-

fined arbitrarily. We shall denote the second and fourth mo-

ments of the conditional mark density as σ2
α(τ) and κα(τ),

respectively.

The expectation of the temporal moments are readily ob-

tained by (6). To compute the covariance structure, we first

note that the second order factorial intensity function of a

Poisson point proceses is [12, 14],

λ (2)(τ,τ ′) = λ (τ)λ (τ ′). (11)

Since the marks are independent, we have

A(τ,τ ′) =

{
κα(τ), τ = τ ′

σ2
α(τ)σ2

α(τ ′), τ �= τ ′
(12)

Using this in (7)–(10) gives

σi j =
∫

κα(τ)λ (τ)τ i+ jdτ (13)

which can be readily solved by analytical or numerical in-

tegration upon specification of κ and λ . It should be noted,

however, that the integral may diverge for some model set-

tings and temporal moments. Then the covariances are not

defined.

We remark that distinct settings with the same power de-

lay spectra, and thus mean temporal moments, may lead to

very different covariance structures. In fact, to give iden-

tical mean and covariance structures, both the power delay

spectrum and the fourth moment delay spectrum κα(τ)λ (τ)
should agree. This confirms the observations from [15, 2]

where it was observed that models with the same power

delay spectrum, but different higher moment spectra, pro-

duced different distribution of temporal moments.

4.1 Example with Exponential Power Decay
and Gaussian Marks

We further specialise the model by considering in the room

electromagnetic model in [2]. In this model, the transmitter

and receiver are considered to be both in the same room.

This setup yields power delay spectrum of the form

P(t) = G0 exp(−t/T ), t > 0, (14)

where G0 and T are the reverberation gain and time, respec-

tively. For the arrival rate we use the parametric function

proposed in [2]

λ (t) = atb, t > 0 (15)



Table 1. Simulation Settings

Parameter Value

Room dim. 5×5×3m3

g 0.6
c 3·108 m/s

tmax 120ns

No. Monte Carlo runs 104

controlled by the parameters a > 0 and b. The mark distri-

bution p(α|τ) is chosen to be a circular complex Gaussian

with conditional second moment

σ2
α(τ) =

P(τ)
λ (τ)

, t > 0. (16)

Thus the fourth moment reads

κ(τ) = 2σ4
α(τ). (17)

Inserting this model into (6) and (13) and integrating gives

closed form expressions for the means and covariances

μi = G0T i+1i! (18)

and

σi j =
2G2

o

a

(
T
2

)i+ j−b

Γ(i+ j−b+1), (19)

where the covariance expression is valid provided that i+
j − b+ 1 > 0. For i+ j − b+ 1 ≤ 0, the integral diverges

and the covariance does not exist. For integer b, the gamma

function reduces as Γ(i+ j−b+1) = (i+ j)!.

Som observations follows from the (19). Firstly, the co-

variance σi j is inversely proportional to any scaling of the

arrival rate. Thus for models with smaller arrival rate the

temporal moments tend to have stronger correlation. In

contrast, the mean of any temporal moment is unaffected

by a such a scaling. Secondly, the covariances depend on

the reverberation time. Thirdly, the parameter b which de-

termines the growth of the arrival rate with delay, affects the

covariance structure. In particular, if b is large, the covari-

ances for lower order temporal moments may not be finite.

The is a practical concern in room electromagnetic mod-

els such as [2] for which b = 2. In this particular case, the

distribution of m0 is heavy tailed with undefined variance.

5 Simulation

We compare the theoretical to Monte Carlo simulations for

the example in Subsection 4.1. The values for the model

parameters, are set according to room electromagnetics:

G0 =
4πc
V

, T =− 4V
cS lng

, a =
4πc3ω2

V
, b = 2. (20)

where V denotes the room volume, S is the surface area of

the room, c is the speed of light and g is a average reflection
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Figure 1. Mean and standard deviation of temporal mo-

ments. The simulation settings are given in Table 1. Chan-

nels are simulated op to a maximum time tmax.

gain. The beam coverage fraction ω is a parameter which

describes the directivity of an antenna and ranges from zero

(infinitely directive) to one (isotropic). Both antennas of the

link to have the same ω . The directivity of the antenna scale

the arrival rate, but no the power delay spectrum [15, 2].

The empirical mean and standard deviations are plotted in

Figure 1 agrees with the theoretical results are when these

exist. As predicted, the means are constant while the stan-

dard deviations
√

σ11 and
√

σ22 decay linearly with ω . Fig-

ure 2 reports the empirical cdf and kernel density estimates

of the distributions of m0,m1, and m2. Moreover, lognormal

distributions are shown for m0 and m1 for which the means

and variances can be obtained. It appears that the lognor-

mal distributions are quite accurate, and nearly perfect for

the second order temporal moment.

6 Conclusion

The derived expression relates the covariance of temporal

moments directly to the arrival rate and second-order inten-

sity of the arrival process. This highlights the importance

of the second order intensity in a stochastic channel model,

an entity which is commonly ignored. By properly select-

ing the arrival process, both the mean and covariance of the

temporal moments can be fitted to measurements. The re-

sults are applicable to any stochastic model for which the



Figure 2. Empirical distribution of temporal moments with

ω as parameter. For m1 and m2 log-normal distributions are

included with theoretical mean and variance. The settings

are as in Figure 1.

second order factorial intensity function for the delay pro-

cess can be obtained.
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