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Abstract

Two-way relaying systems can significantly save time re-

source and increase the throughput for wireless communi-

cation systems. In this paper, we carry out the performance

analysis of two-way relaying systems over mixed fluctuat-

ing two-ray (FTR) and Nakagami-m fading channels. The

FTR fading promises a good fit for small-scale experimen-

tal data in millimeter wave communications. More specif-

ically, we derive novel and exact analytical expressions for

outage probability (OP) and simple asymptotic OP at high

signal-to-noise-ratio regimes to show important physical in-

sights into the impact of parameters on the system perfor-

mance. It is interesting to find that lager values of fading

severity parameters of both links help to decrease the OP.

Finally, the correctness of our derived analytical results is

validated by Monte Carlo simulations.

1 Introduction

Recently, two-way relaying systems have received a lot

of attention for bringing huge effective system throughput

in wireless communications. With the aid of a relay n-

ode, two-way relaying can significantly save the time re-

source. In contrast to half-duplex relaying scheme, two-

way relaying enables the source and destination commu-

nicate within only two time slots. The performance of

two-way interference-limited amplify-and-forward (AF) re-

laying systems over independent, non-identically distribut-

ed Nakagami-m fading channels was investigated in [1].

Moreover, performance analysis and relay selection of two-

way hybrid terrestrial-satellite relaying systems were pro-

posed in [2], which analyzes the performance of systems

over Nakagami-m and κ-μ shadowed fading channels.

The FTR channel fading model recently proposed in [3]

has been proved to be very useful, since it is in good a-

greement with the experimental data of millimeter wave

(mmWave) communications. Therefore, considerable re-

search has been carried out on the FTR fading channel. For

example, exact probability distribution function (PDF) and

cumulative distribution function (CDF) for the FTR distri-

bution with arbitrary parameters were proposed in [4]. To

the best of our knowledge, however, the mmWave bands

have not been considered in the two-way relaying system-

s. To this end, for the successful deployment of mmWave

bands in two-way relaying systems, a complete understand-

ing of its performance when operating under FTR fading

channels becomes essential.

Motivated by the above discussion, in this paper we present

novel analytical expressions for outage probability (OP) of

two-way relaying systems over mixed FTR and Nakagami-

m fading channels. Moreover, simple asymptotic expres-

sions for the OP are derived to obtain important engineer-

ing insights in the high-SNR regime. Finally, our results

can generalize most of previous results in the literature.

2 Two-Way Relaying Systems

2.1 System Model

Similar to [2], let us consider two transmitter nodes A and B
communicating with each other through an AF relay R. Due

to poor communication quality in the direct link, we adopt

a relay R to assist the transmission of links as A → R → B
and B → R → A. All nodes are equipped with one antenna.

The transmission process between A and B is divided into

two time phases. Specifically, in the first phase, both A and

B transmit symbols to the relay R simultaneously. In the

second phase, the relay R processes the received signal to

forward the combined symbols to both A and B. We assume

that the channel state information is completely known at

each node, and perfect synchronization between A, B and R
is achieved. Then, the instantaneously received SNRs at A
and B can be given by [5]

γA =
P2Qγ1γ2

(P1 +Q)γ1 +P2γ2
, (1)

γB =
P1Qγ1γ2

(P2 +Q)γ2 +P1γ1
, (2)

where γ1 = |h1|2/N0, γ2 = |h2|2/N0, and N0 denotes the

variance of the additive white Gaussian noise (AWGN) at

all nodes. On the other hand, We use h1 and h2 to denote the

channel coefficients of A → R and B → R links. P1, P2, and

Q denote the transmit power at A, B, and R, respectively.

Without loss of generality, we introduce power coefficients

as pd � P1+Q
P2Q , ps � P2+Q

P1Q , bq � 1/Q. Then, we can rewrite



(1) and (2) as

γA =
γ1γ2

pdγ1 +bqγ2
, (3)

γB =
γ1γ2

bqγ1 + psγ2
. (4)

2.2 Channel Model

The Nakagami-m fading is assumed for the A ↔ R link.

The instantaneous SNR of the A ↔ R link, γ1, is a gamma

distributed RV. Then the probability distribution function

(PDF) of γ1 is given by [2, Eq. (7)]

fγ1
(γ) =

m1
m1

γm1
1 Γ(m1)

γm1−1 exp

(
−m1γ

γ1

)
, (5)

where Γ(·) is the gamma function [6, Eq. (8.310.1)] and

m1 is the Nakagami-m fading parameter. γ1 = σ2
h1

γ0 is the

average SNR of the A ↔ R links, and σ2
h1

= E[|h1|2] is the

expectation operator. Moreover, we introduce γ0 � P1/N0

as the average transmit SNR of the A → R link, and intro-

duce γ0 � Q/N0 for the R → A link, respectively. Hence,

the CDF of γ1 can be written as

Fγ1
(γ) = 1− Γ(m1,(m1/γ1)γ)

Γ(m1)
, (6)

where Γ(·, ·) is the upper incomplete gamma function [7, E-

q. (8.350.2)]. Furthermore, the B ↔ R link is modeled as

the FTR distribution, which provides better fit than other

channel models with small-scale fading measurements in

mmWave communications [3, 4]. The PDF of the instanta-

neous SNR of S ↔ R links, γ2, is given as [4, Eqs. (6)]

fγ2
(γ) =

m2
m2

Γ(m2)

∞

∑
j=0

K jd j

j!
fG
(
γ; j+1,2σ2

)
, (7)

where fG
(
γ; j+1,2σ2

)
and d j is given in [4, Eqs. (8-9)].

K denotes the ratio of the average power of the dominan-

t wave to the remaining diffuse multipath and m2 is the

fading severity parameter. Moreover, P·· (·) is the Legen-

dre function of the first kind [7, Eq. (8.702)], while Δ
is a variable from 0 to 1, representing the correlation be-

tween the two dominant waves. Furthermore, γ2 = σ2
h2

γ0

represents the average SNR of the B ↔ R links. Similar-

ly, σ2
h2

= E[|h2|2] is the variance of the channel coefficient

h2, where γ0 � P2/N0 and γ0 � Q/N0 denotes the average

transmit SNR of the B → R link and of the R → B link,

respectively. Then, the CDF of γ2 is given as

Fγ2
(γ) =

m2
m2

Γ(m2)

∞

∑
j=0

K jd j

j!
FG

(
γ; j+1,2σ2

)
, (8)

where

FG
(
γ; j+1,2σ2

)
� 1

Γ( j+1)
γ
(

j+1,
γ

2σ2

)
, (9)

where γ (·, ·) is the lower incomplete gamma function [7,

Eq. (8.350.1)].

Table 1. Required Terms of Po,γA for Truncation Error S-

maller Than 10−3 With Different m1, m2, K and Δ (γth=2dB

and γ̄1 = γ̄2)

Average SNR γ̄1 [dB] 5 12.5 20 30

m1 = 5,m2 = 5,K = 5,Δ = 0.35 21 18 5 2

m1 = 2,m2 = 3,K = 3,Δ = 0.1 23 16 14 3

m1 = 3,m2 = 15,K = 20,Δ = 0.48 47 34 33 1

Table 2. Required Terms of Po,γB for Truncation Error S-

maller Than 10−3 With Different m1, m2, K and Δ (γth=3dB

and γ̄1 = γ̄2)

Average SNR γ̄1 [dB] 5 12.5 20 30

m1 = 3,m2 = 1,K = 10,Δ = 0.2 57 72 76 75

m1 = 5,m2 = 5,K = 5,Δ = 0.35 23 31 27 26

m1 = 1,m2 = 10,K = 20,Δ = 0.35 51 59 60 60

3 Performance Analysis

3.1 Outage Probability

The outage probability Po (γth) is defined as the probability

that the instantaneous SNR is below a given threshold, and

it can be written as Po (γth) = Pr(γ < γth). Therefore, we

can derive the OP at A as

Po,γA (γth) = FγA (γth) , (10)

Po,γB (γth) = FγB (γth) , (11)

where FγA (γth) and FγB (γth) represent the CDFs at A and

B in the case of instantaneous SNR, respectively. Then the

exact OP is given by the following Lemma.

Lemma 1. The exact OP at A and B of two-way relaying
systems are given as (12) and (13) at the bottom of the next
page, where m1 is a positive integer, Φ1 � m1bq/γ̄1, Φ2 �
pd/2σ2, Ψ1 � m1 ps/γ̄1, Ψ2 � bq/2σ2, c j � m

m2
2 K jd j

Γ(m2)Γ( j+1) ,

and Kv (·) denotes the vth-order modified Bessel function of
the second kind [8, Eq. (9.6.2)].

Proof. Please see Appendix.

Tables I and II present the required terms of infinite series

in (12) and (13) for a required convergence. Although there

are infinite terms in the formulas, it requires a small number

of terms to reduce the error to smaller than 10−3 for all

considered cases. As shown in the Tables, the truncation

error is related to different channel fading parameters.

Considering Rician shadowed fading model (by setting

Δ = 0), (12) and (13) can reduce to the ones for mixed

Nakagami-m and Rician shadowed fading channels in [2,

Eqs. (15-16)]. Moreover, (12) and (13) can reduce to the

OP of two-way AF relaying systems over Nakagami-m (by

setting K → ∞ and Δ = 0) fading channels in [9, Eq. (15)].



3.2 Asymptotic Outage Probability

In order to reveal more engineering insights, we elaborate

on the asymptotic high-SNR regime.

Lemma 2. With high-SNR regime, the asymptotic OP of
two-way relaying systems at A and B can be expressed as

P∞
o,γA

≈ 1−
2

∑
i=0

m1−1

∑
k=0

mk
1bk

q

i!k!γ̄k
1

(−Φ1γ)i γk +
2

∑
i=0

∞

∑
j=0

m1−1

∑
r=0

×
(

m1 −1

r

)(
m1

γ̄1

)m1−r−1 c jΓ(r+1)bm1−r−1
q

i!Γ(m1)
(−Φ1γ)i

× γm1−r−1 −
2

∑
i=0

∞

∑
j=0

j

∑
t=0

t

∑
s=0

m1−1

∑
r=0

(
m1 −1

r

)(
t
s

)

×
(

m1

γ̄1

)m1− r−s+1
2 c jΓ(|r− s+1|)b

m1+
3s−r−1

2
q

i!t!Γ(m1)
Φ2

t+ r−s+1
2

× (−(Φ1 +Φ2)γ)i (Φ1Φ2)
− |r−s+1|

2 γm1+t−|r−s+1|,
(14)

P∞
o,γB

≈ 1−
2

∑
i=0

∞

∑
j=0

j

∑
r=0

m1−1

∑
k=0

k

∑
v=0

(
j
r

)(
k
v

)

× c jΓ(|r− v+1|)b j− r−v−1
2

q

i! j!k!(2σ2) j− r−v−1
2

(−(Ψ1 +Ψ2)γ)i

× (Ψ1Ψ2)
− |r−v+1|

2 (Ψ1)
k+ r−v+1

2 γ j+k+1−|r−v+1|. (15)

Proof. For high SNRs, according to [8, Eq. (9.6.6)] and

[8, Eq. (9.6.9)], we can express K (·) as

Kr−v+1

⎛
⎝√

2m1 psbqγ2

γ̄1σ2

⎞
⎠≈ (|r− v+1|)

2

(
m1 psbqγ2

2γ̄1σ2

)|r−v+1|
.

(16)

According to [7, Eq. (1.211.1)], the exponential function ex

can be represented by the main decisive terms (here we use

3 smallest exponents). After some mathematical simplifi-

cations, (14) can be obtained. Following similar steps, we

can obtain (15) to finish the proof.
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Figure 1. The OP of transmitter node A against the average

SNR γ̄1 for different values of γ̄2 (m1 = m2 = 1, K = 10,

Δ = 0.2 and γth = 3dB).

We can find several important engineering insights from the

above results. For example, lager values of m1, m2 and larg-

er average SNR of the links help to decrease the OP. This is

because both light shadowing (larger m1 and m2) and high

SNRs reduce the effects of fading.

4 Numerical Results

Figure 1 depicts the analytical, simulated, and high-SNR

approximate OP at transmitter node A for different values

of γ̄2. It can be clearly seen that simulation and analytical

curves fit well, which validates the accuracy of our previ-

ous derived results. Moreover, the approximations are quite

tight with the exact OP in the high-SNR regime. Increasing

the SNR at one link (such as γ̄1), the OP decreases. The

impact of different values of channel parameters m1 and m2

on the OP at B is evaluated in Fig. 2. With m1 and/or m2

increasing, it is obviously seen that the Po,γB decreases.

5 Conclusion

In this paper, we derive exact analytical expressions of OP

to investigate the performance of two-way relaying system-

s over mixed FTR and Nakagami-m fading channels. To

Po,γA (γ) = 1−
m1−1

∑
k=0

m1
kbq

k

k!γ̄k
1

exp(−Φ1γ)γk +
∞

∑
j=0

m1−1

∑
r=0

(
m1 −1

r

)(
m1

γ̄1

)m1−r−1 c jΓ(r+1)bq
m1−r−1

Γ(m1)
exp(−Φ1γ)γm1−r−1

−2
∞

∑
j=0

j

∑
t=0

t

∑
s=0

m1−1

∑
r=0

(
m1 −1

r

)(
t
s

)(
m1

γ̄1

)m1− r−s+1
2 c jbq

m1+
s−r−1

2

t!Γ(m1)
Φ2

t+ r−s+1
2 exp(−(Φ1 +Φ2)γ)γm1+tKr−s+1

(
2γ
√

Φ1Φ2

)
, (12)

Po,γB (γ) = 1−2
∞

∑
j=0

j

∑
r=0

m1−1

∑
k=0

k

∑
v=0

(
j
r

)(
k
v

)
c jbq

j− r−v−1
2

j!k!(2σ2) j− r−v−1
2

Ψk+ r−v+1
2

1 exp(−(Ψ1 +Ψ2)γ)γ j+k+1Kr−v+1

(
2γ
√

Ψ1Ψ2

)
. (13)
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Figure 2. The OP of transmitter node B against the average

SNR γ̄1 for different values of m1 and m2 (K = 10, Δ = 0.2,

γ̄1 = γ̄2 and γth = 3dB).

obtain important physical insights and simplify the calcu-

lation, closed-form expressions for high-SNR regime have

been presented. Our results reveals the relationship be-

tween channel parameters and system performance. For in-

stance, OP performance can be improved by increasing the

values of m1 and/or m2. Furthermore, the OP performance

of the two-way relaying systems can also be improved by

increasing the values of the transmit power at A, B and/or

the average SNR at either link. Ultimately, the presented

results are quite useful for satisfying the performance re-

quirements of a practical two-way relaying mmWave sys-

tem.

6 Appendix

With the help of (5), we can express the FγA (γ) as

FγA (γ) =
∫ ∞

0
Pr (γA � γ|γ1) fγ1

(γ1) dγ1

=
∫ bqγ

0
Pr

(
γ2 �

pdγγ1

γ1 −bqγ
|γ1

)
fγ1

(γ1) dγ1

+
∫ ∞

bqγ
Pr

(
γ2 �

pdγγ1

γ1 −bqγ
|γ1

)
fγ1

(γ1) dγ1

= Fγ1
(bqγ)+

∫ ∞

bqγ
Fγ2

(
pdγγ1

γ1 −bqγ

)
fγ1

(γ) dγ1︸ ︷︷ ︸
A1

. (17)

Substituting (6) into (17), and with the help of [7, Eq.

(8.352.2)], Fγ1
(bqγ) can be solved. According to (5), (8)

and (9), we can simplify the integral A1 as

A1 =
m1

m−1m2
m2

γ̄1Γ(m1)Γ(m2)
γ̄1 exp

(
−m1bqγ

γ̄1

) ∞

∑
j=0

m1−1

∑
r=0

× K jd j

Γ( j+1)Γ( j+1)
(bqγ)m1−r−1

(
m1

r

)

×
∫ ∞

0
xrγ

(
j+1,

pdγ (x+bqγ)
2σ2x

)
exp

(
−m1x

γ̄1

)
dx︸ ︷︷ ︸

A2

.

With the help of [7, Eq. (8.356.3)], [7, Eq. (3.351.3)], [7, E-

q. (8.352.2)] and [7, Eq. (3.471.9)], A2 can be easily solved.

Then Po,γA is obtained after some simplifications. Similar to

(17), the CDF of γB can be expressed as

FγB =Fγ2
(bqγ)+

∫ ∞

bqγ
Fγ1

(
psγγ2

γ2 −bqγ

)
fγ2

(γ) dγ2

=1−
∫ ∞

bqγ
F̄γ1

(
psγγ2

γ2 −bqγ

)
fγ2

(γ2) dγ2︸ ︷︷ ︸
B1

,
(18)

With the help of [7, Eq. (3.471.9)], the CDF of γB can be

obtained with some mathematical simplifications.
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