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Abstract 
 

The development of SAR technology brings a large 

number of high-resolution SAR images. SAR clutter in 

these images contains rich environmental information 

which is inappropriate to be modeled by a single simple 

statistical model as traditional approaches. It is very 

critical to reveal the physical information stored in these 

images for further interpretation and applications of SAR 

images. This paper aims to give a physical perspective of 

the correlated SAR clutter starting from the coherent 

scatterer model. The Gaussian coherent scatterer (GGCS) 

model kicks off the first step in modeling the physical 

processes of clutter and the probabilistic graphical 

network is expected to be an effective intelligent 

realization of the GGCS model. 

 

1 Introduction 
 

As the development of the high-resolution synthetic 

aperture radar (SAR), a large number of high-resolution 

SAR images are obtained which are urgently needed for 

in-depth analysis. The statistical representation of SAR 

clutter is a fundamental research for further interpretation 

and applications of SAR images such as despeckling, 

target detection and recognition [1,2].  

  

Traditional statistical methods are usually based on the 

distributional characteristics of pixel values and their 

relationships. They only consider the high-level cognitive 

characteristics of the image, but do not necessary take into 

account the actual scattering and imaging mechanism 

[1,3]. As the improvement of the resolution of SAR 

images, the limitations of such approaches show up 

gradually due to the lack of physical information. In 

recent years, the research on high-resolution SAR image 

statistical modeling has refocused on the physical process 

of electromagnetic scattering [4-6]. As a consequence, the 

early non-Rayleigh speckle model based on scattering 

process modeling reclaims a prominent position [1,7]. It is 

developed based on the coherent scatterer model which 

models the SAR clutter as the coherent sum of a large 

number of complex-valued components with independent 

phases. Many existing distributions can be obtained as 

some special case under the coherent scatterer model from 

the perspective of scattering process [6].  It shows that the 

statistical characteristics of SAR clutter is determined by 

the statistical setting of the scattered field of a single 

scatterer and the number of scatterers in a resolution cell. 

Besides, the traditional statistical methods usually ignore 

the spatial correlation which brings the texture 

information of SAR clutter. It is therefore very critical to 

describe the correlation characteristic of the physical 

scene. This physical analysis inspires the proposal of the 

generalized Gaussian coherent scatterer (GGCS) model.  

 

The GGCS model can be seen as a simplification of the 

coherent scatterer model which assumes the underlying 

scatterers are Gaussian distributed [6]. It is physics-

plausible and can be used to simulate correlated SAR 

clutter of various scenarios. Most existing single-point 

distributions can be seen as a special case of the GGCS 

model by stipulating the distribution of the number of 

scatterers in each pixel. The rich representation capability 

and physical interpretability of the GGCS model show its 

potential in the future applications. However, an 

intelligent realization for parameter estimation and 

automated physical analysis of GGCS are still remained 

to be solved. Aiming at these two problems, an efficient 

learning framework is undoubtedly needed. The main 

characteristics of GGCS realization are randomness and 

convolutional realization. These two points inspire us to 

model a probabilistic graphical network which represents 

the GGCS model by a multi-layer probabilistic 

convolutional neural network [8]. 

 

In this paper, the physical analysis of non-Rayleigh 

speckle model based on the coherent scatterer model is 

given in Section 2. Section 3 describes the GGCS model 

and the probabilistic graphical network framework is 

given in Section 4. Section 5 comes to conclusion. 

 

2 Physical analysis based on the coherent 

scatterer model 
 

The coherent scatterer model, also known as the discrete 

scatterer model, describes the speckle phenomenon 

caused by the coherent sum of complex-valued scattered 

field of scatterers in a resolution cell. Such a model 

describes the complex return from a single-image cell as  

𝑨 = 𝐴𝑒𝑗𝜙 = ℜ + 𝑗ℑ = ∑ 𝒂𝑖

𝑁

𝑖=1

= ∑ 𝑎𝑖𝑒
𝑗𝜙𝑖

𝑁

𝑖=1

= ∑(ℜ𝑖 + 𝑗ℑ𝑖)

𝑁

𝑖=1

, 

(1) 



where 𝑨  is the amplitude of the received signal, 𝜙  its 

phase, 𝑗 = √−1, and ℜ and ℑ the decomposition of 𝑨 in 

its real and imaginary parts. These components are the 

coherent sum of the electromagnetic scattered fields from 

𝑁  independent scatterers, each with amplitude 𝑎𝑖  and 

phase 𝜙𝑖. Equation (1) shows that the statistical properties 

of the scattered field 𝑨 are completely determined by the 

statistical properties of {𝑎𝑖 , 𝜙𝑖 , 𝑁} or {ℜ𝑖 , ℑ𝑖 , 𝑁}. And the 

following assumptions are adopted [1,6]： 

 

1) 𝑎𝑖 , 𝑎𝑗 , 𝜙𝑖 , 𝜙𝑗 , (𝑖 ≠ 𝑗)  are collectively independent 

random variables; 

2) {𝜙𝑖} is uniformly distributed at [0,2π). 

 

Based on the coherent scatterer model, many non-

Rayleigh statistical distributions can be summarized by 

starting from the modeling of the number of scatterers and 

the amplitude of the scatterers as shown in Figure 1. The 

number of scatterers in a single resolution cell can 

typically be modeled as a constant (including infinite 

constant and finite constant) or a variable obeying a 

certain distribution (such as the Poisson and negative 

binomial distributions). The scattered amplitude of each 

scatterer can be modeled as 1) a constant, 2) a number of 

independent identically distributed variables (such as K 

distribution, Rayleigh distribution, or arbitrary 

distribution), and 3) sum of a constant and an infinite 

number of variables.  

 

 

Figure 1. Physical analysis of the intensity distributions 

based on non-Rayleigh speckle model 

 

If the number of scatterers is an infinite constant and the 

scattered amplitude is modeled as the sum of a known 

constant and an infinite number of independent identically 

distributed (IID) variables, then the Rice (or Rician) 

distributed scattered field can be obtained [9]. Rician 

inverse Gaussian (RiIG) distributed intensity can be 

obtained by mixing the Rician distribution and inverse 

Gaussian distribution which is explained by Brownian 

motion with a stop time [10]. Interestingly, RiIG 

distribution can also be explained using the non-Rayleigh 

speckle model. If the number of scatterers is modeled as 

Poisson distribution with its expectation obeying inverse 

Gaussian distribution and the amplitude is modeled as the 

sum of a known constant and an infinite number of IID 

variables, then RiIG distributed intensity is obtained [10]. 

If the number of scatterers is modeled as a Poisson 

distribution, and the expectation of the Poisson 

distribution is also a random variable which can be 

modeled as gamma distribution, inverse gamma 

distribution, Beta distribution of the second kind, and 

Beta distribution of the first kind, then the scattered 

intensity obeying 𝐾  distribution, 𝐺0  distribution, 𝑈 

distribution and 𝑊  distribution can be respectively 

obtained by combing the above different distributions of 

Poisson expectation and amplitude with arbitrary 

distribution [11-13]. 

 

3 GGCS model 
 

The physical analysis for non-Rayleigh distributions 

reveals the interpretation ability of the coherent scatterer 

model. The GGCS model [6] is a simplification of the 

coherent scatterer model, which assumes that the pair 

(ℜ𝑖 , ℑ𝑖)  obeys an α -stable law, of which the Gaussian 

distribution is a special case. Figure 2 describes the 

GGCS model where 𝑟 and 𝑐 denote the range and azimuth 

dimensions of a 2-D region. The black spots represent 

individual scatterers with a complex-valued scattered field 

of 𝒂𝑟,𝑐: 

 

𝒂𝑟,𝑐 = ℜ𝑟,𝑐 + 𝑗ℑ𝑟,𝑐 , (2) 

 

where ℜ𝑟,𝑐  and ℑ𝑟,𝑐  represent, respectively, the real and 

imaginary components, and both are Gaussian random 

variables with mean 𝜇 and variance 𝜎2 

 

ℜ𝑟,𝑐~𝑁(𝜇, 𝜎2) 

ℑ𝑟,𝑐~𝑁(𝜇, 𝜎2). 
(3) 

 

A square block in Figure 2 represents a resolution cell. 

The total received complex scattered field of a resolution 

cell at position (𝑟′, 𝑐′)  is denoted as 𝑨𝑟′,𝑐′ , and the 

number of scatterers in the resolution cell is 𝑁𝑟′,𝑐′; thus 

 

𝑨𝑟′,𝑐′ = ℜ𝑟′,𝑐′ + 𝑗ℑ𝑟′,𝑐′ = ∑ 𝒂𝑟𝑖,𝑐𝑖

𝑁
𝑟′,𝑐′

𝑖=1

, (4) 

 

where {(𝑟𝑖 , 𝑐𝑖), 𝑖 = 1,2, ⋯ , 𝑁𝑟′,𝑐′}  denotes the set of 

scatterers located within the resolution cell at position 

(𝑟′, 𝑐′). For an SAR image of size 𝐿 × 𝑀, the maximum 

number of scatterers per resolution is denoted as 𝑁max 

 

 𝑁max = max{𝑁𝑟′,𝑐′}; 1 ≤ 𝑟′ ≤ 𝐿, 1 ≤ 𝑐′ ≤ 𝑀. (5) 

 

Denoting the scattered field of the 𝑖 th scatterer in the 

resolution cell at position (𝑟′, 𝑐′)  as 𝑨(𝑟′,𝑐′ ,𝑖) , then the 

total scattered field 𝑨𝑟′,𝑐′ in the resolution cell is 

characterized in the 𝐿 × 𝑀 × 𝑁max 3-D space as 

 



𝑨𝑟′,𝑐′ = ∑ 𝑨𝑟′,𝑐′ ,𝑖

𝑁
𝑟′,𝑐′

𝑖=1

 

1 ≤ 𝑟′ ≤ 𝐿, 1 ≤ 𝑐′ ≤ 𝑀, 1 ≤ 𝑖 ≤ 𝑁max, 

(6) 

 

where 𝑨𝑟′,𝑐′,𝑖  is a nonzero value only when there is a 

scatterer at the position (𝑟′, 𝑐′, 𝑖) 

 

𝑨𝑟′,𝑐′,𝑖 = {
𝒂𝑟𝑖,𝑐𝑖

,     if 1 ≤ 𝑖 ≤ 𝑁𝑟′,𝑐′

0,      if 𝑁𝑟′,𝑐′ < 𝑖 ≤ 𝑁max
, (7) 

 

where 𝑨𝑟′,𝑐′,𝑖 = 0 indicates that there  is no scatterer.  

 

 

Figure 2. Gaussian coherent scatterer model 

 

The texture information of an SAR image is caused by the 

spatial correlation of the distribution of underlying 

scatterers and the scatterer number. Both of them are 

treated as correlated random fields with a two-point 

correlation structure. The correlation coefficients of the 

underlying Gaussian scatterers and number of scatterers 

are determined by the correlation coefficient of the real-

component and intensity SAR data according to the 

following correlation relationship: 

 

𝜌ℜℜ(𝜏) =
𝐸[𝑚𝑖𝑛 {𝑁(0), 𝑁(𝜏)}]

𝜇𝑁

𝐸[𝜌𝑥𝑥(𝑖, 𝜏)] (8) 

 

𝜌𝐼𝐼(𝜏) =
𝐸[𝑁𝑚𝑁𝑚]𝜌𝑥𝑥

2 (𝜏) + 𝜌𝑁𝑁(𝜏)𝜎𝑁
2

2𝜎𝑁
2 + 𝜇𝑁

2  (9) 

 

where 𝜌𝑥𝑥(𝑖, 𝜏) , 𝜌𝑁𝑁(𝜏) , 𝜌ℜℜ(𝜏)  and 𝜌𝐼𝐼(𝜏)  are 

correlation coefficients of underlying Gaussian scatterer, 

scatterer number, real-component and intensity SAR data, 

respectively. 𝜇𝑁 and 𝜎𝑁
2 are the mean and variance of the 

scatterer number 𝑁 , respectively. 𝑁(0)  denotes the 

scatterer number at current position while 𝑁(𝜏)  is the 

scatterer number in the distance 𝜏  and 𝑁𝑚 =
min [𝑁(0), 𝑁(𝜏)]. 
 

The parameters of GGCS model [6] include 1) the 

distribution parameters of the underlying Gaussian 

scatterers and the number of scatterers, which determines 

the single-point probability distribution and 2) the 

convolution kernels of the underlying Gaussian scatterers 

and the number of scatterers, which determines the 

correlation structure. These parameters are all inferred 

from the statistical characteristics of a given SAR sample 

data. However, it is dependent on the preprocess step i.e. 

model selection and parameter estimation, which bring 

inconvenience and estimation deviation in practical 

applications. Therefore, a unified intelligent framework is 

needed for further physical analysis which brings the 

probabilistic graphical network below. 

 

4 Probabilistic graphical network 
 

Aiming to give an automated realization for the GGCS 

model, the probabilistic graphical network is proposed. 

The randomness and convolution operator of the GGCS 

model enlighten the proposal of the probabilistic graphical 

network shown in Figure 3. It represents the GGCS model 

by using multi-layer probabilistic convolutional neural 

networks.  

 

The real component ℜ(𝑥, 𝑦)  and imaginary component 

ℑ(𝑥, 𝑦) of the SAR image is modeled as: 

 

ℜ(𝑥, 𝑦) = ∑ ℜ𝑘(𝑥, 𝑦)

𝑀

𝑘=1

= ∑ 𝐺𝑘
ℜ(𝑥, 𝑦) ∙ 𝑏𝑘(𝑥, 𝑦)

𝑀

𝑘=1

 (10) 

 

ℑ(𝑥, 𝑦) = ∑ ℑ𝑘(𝑥, 𝑦)

𝑀

𝑘=1

= ∑ 𝐺𝑘
ℑ(𝑥, 𝑦) ∙ 𝑏𝑘(𝑥, 𝑦)

𝑀

𝑘=1

 (11) 

 

where 𝑀  is the number of channels, 𝐺𝑘
ℜ(𝑥, 𝑦)  and 

𝐺𝑘
ℑ(𝑥, 𝑦)  are correlated Gaussian random filed with the 

correlation function 𝜌𝑔𝑖
(𝑖 = 1,2, ⋯ , 𝑀) , 𝑏𝑘(𝑥, 𝑦)  is 

binary mask denoting the status of a scatterer which has: 

 

𝑏𝑘(𝑥, 𝑦) = {
1, if there exists a scatterer
0, if there is no scatterer      

. (12) 

 

Different from the GGCS model, the channel of the 

number of scatterers is set as a constant 𝑀 instead of a 

random variable by introducing the binary mask. This 

setting avoids the decorrelation effect caused by the 

variation of the number of scatterers. Then the amplitude 

image can be represented as: 

 

𝐴(𝑥, 𝑦) = √ℜ2(𝑥, 𝑦) + ℑ2(𝑥, 𝑦). (13) 

 

The framework yields a directional graphical model [8] 

starting from the Gaussian random variables and binary 

random variables. The correlation property can be 

introduced by a convolution operation which can be 

realized using convolutional layer.  The whole framework 

should be a trainable network which can obtain the 

parameters automatically by optimizing the error of the 

simulated and real SAR images. The primary correlated 

SAR clutter simulated results based on the probabilistic 

graphical network are shown in Figure 4 by setting 

Gaussian kernels. The probabilistic graphical network 



shows its advantage on the parameter modeling and is 

potential for further intelligent realization of GGCS model 

which is useful for the deeply statistical analysis of SAR 

images. 

 

 

Figure 3. The framework of probabilistic graphical 

network 

 

Figure 4. Simulated correlated clutter by probabilistic 

graphical network where Gaussian kernels is adopted 

 

5 Conclusion 
 

A physical perspective of correlated SAR clutter is 

analyzed in this paper. Several non-Rayleigh distributions 

models are re-analyzed based on the coherent scatterer 

model building on the physical scattering process. The 

physical analysis gives birth to the proposal of the GGCS 

model which is a physics-plausible generalized 

framework for existing several distributions.  To enable 

automatic and intelligent realization of the GGCS model, 

the probabilistic graphical network is introduced for its 

strong learning ability. This paper focuses on the physical 

analysis of the SAR clutter which is critical for the 

interpretation of high-resolution SAR images. 
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