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Abstract 
 
Radar-derived storm scale convection holds an important 

place in the scale hierarchy of tropical deep convective cloud 

systems as storms occupy major fraction and contribute to 

more than 90% of the convective precipitation. Nevertheless, 

accurately representing them in climate models requires an 

understanding of the relationships between the states of 

convective cloud ensemble and the large-scale environment. 

We investigate this relationship using 9 wet seasons of radar 

observations in a tropical station located at the eastern flank 

of Indian Summer Monsoon Trough. We find several key 

characteristics of convective storms are related with their 

own unique environments. The larger positive moisture 

convergence is associated with increased convective 

precipitation through increasing convective precipitation 

area. Numerous Convective storms are likely to occur in 

moist mid- tropospheric conditions, albeit those cells are less 

intense.  On other hand, in a relatively drier mid-

tropospheric conditions storms are observed to be fewer but 

more intense. CAPE is observed to affect cell area and cell 

number in a disproportionate way such that it has a stronger 

influence on intensity than areal mean property. Though our 

findings are statistically robust, we acknowledge significant 

variability in the relationships. Storm scale Convection bears 

a more systematic relationship with large-scale environment 

measures related to large-scale convergence compared to 

instability/energetics. 

 

1 Introduction 
 

Monsoon Convective cloud systems are multi-scale rain 

bearing system in the tropics with spatiotemporal scale 

ranging from an individual cumulonimbus clouds to 

meso-scale convective systems (MCSs). There is a long 

history on MCSs characteristics and know-how related to 

their dynamic/thermodynamic environment interactions 

using ground-based radar observation during the field 

experiments such as Global Atmospheric Research 

Program Atlantic Tropical Experiment (GATE), Tropical- 

Ocean Global Atmosphere Coupled Ocean Atmosphere 

Response Experiment (TOGA COARE), Dynamics of 

Median-Julian Oscillation (DYNEMO) as well as space-

born radar observation program like Tropical Rainfall 

Measuring Mission(TRMM), Global Precipitation 

Measurement (GPM) [1]. However, the storms/cells 

within the MCSs occur at spatiotemporal scales much 

smaller than the larger-scale systems (i.e. MT) in a 

synoptic scale atmospheric environment like Monsoon 

regimes and remain very less explored over Indian 

Regions with few of its kind study [2]. Monsoonal MCSs 

contains few to more than 20 storms within them such 

that they occupy about 40% of convective area and 

contribute about 90% of the convective precipitation 

within an MCS [2]. Also the interrelationship between 

storm and MCS which is a multi-scale feedback nonlinear 

process strongly affect the large-scale environment 

through heating and drying the atmosphere [3]. Therefore, 

radar-derived storm-scale convection holds an important 

place in the scale-hierarchy of the tropical deep 

convective cloud systems.  The nature of convection on 

these smaller scales as compared to the sizes of climate 

model grid box makes their interactions complex and 

therefore implicates the need for parameterization [4]. 

Nevertheless, accurately representing convective cloud 

ensemble in numerical weather and climate models stills 

remains a standalone problem. To parameterize 

convection in general circulation models several 

parameterization schemes is been used and such schemes 

are based on the relationship between the large scale 

atmospheric state at the model grid box scale and the 

convective scales [5]. There are two ways of 

parameterizing convection in numerical models: 

Conventional and stochastic schemes. In conventional 

schemes, assumption used is the Convective Quasi-

Equilibrium (QE) in order to close the model equation 

such that two scales are in quasi-equilibrium condition, 

resulting in several large-scale variables as convective 

characteristics of the environment that relate to the state 

of the convective cloud ensemble. The large-scale 

variable so proposed serves as predictors of the 

convective scale. Those include moisture convergence [6], 

stability measures such as convective available potential 

energy (CAPE) and convective inhibition (CIN) [7], and 

more recently, midtropospheric humidity [8]. 

Nevertheless, there exists variance in the relationship 

between convective and large scale at the smaller 

convective scales and that provides the platform for 

stochastic physics scheme (SPS). SPS is a scale-aware 

scheme that adapt automatically to different spatio-

temporal scales and is a computationally cheaper alternate 

to increasing resolution.   SPS is still in its early stage and 

going through sensitivity study. Therefore, the main 

objective of this study is to present observational evidence 

aimed at helping to constrain convective schemes with 



implications for both convectional as well as stochastic 

schemes. Such study is highly implicative over the eastern 

edge of Indian summer monsoon trough region where 

convective activity is largely controlled by the synoptic 

scale features like monsoon Low Pressure Systems (LPS) 

forming over the Bay of Bengal and passes over the 

region. We attempt to partially fill this gap by explicating 

the relationship of the large scale convective environment 

and the convective state properties of observed storms 

using unprecedented, comprehensive radar observations 

and the large-scale convective environment.   

 

2 Data, Analysis, and Methods 
 

This study requires two time harmonized data sets of 

small scale convective storm ensemble properties and 

large-scale environment. For the former, we use have 

used high-resolution volumetric reflectivity measurements 

form a S‐band Doppler weather Radar(DWR) deployed  

in the close vicinity of the eastern flank of Monsoon 

Trough (MT) zone over Kolkata (                 E, 35m 

AMSL) for nine wet season. Detail technical description 

and data processing can be found in [9]. The polar 

coordinated volume scan radar observations are post-

processed using a Delaunay triangulation scheme to 

interpolate it onto 3D Cartesian coordinate with horizontal 

and vertical resolutions of 1 km and 500m respectively by 

implying the Radx2Grid-algorithm of Radx application 

developed at the Research Application Laboratory, 

National Centre for Atmospheric Research, USA [10]. 

Further, a two dimensional data set, Constant Altitude 

Plan Position Indicator (CAPPI) is generated from the 3D 

radar volume scan data in order to display onto two 

dimensional surfaces at a constant altitude above the earth 

surface. A convective storm is identified by considering 

the CAPPI at 2 km with a reflectivity threshold of 35 dBZ 

(proxy for intensity of the convective system) in a volume 

of at least 30 km
3
 and then tracked in space at discrete 

time steps of each canonical sweep (i.e., 10 min) by using 

an object oriented Lagarangian tracking algorithm TITAN 

(Thunder-storm Identification Tracking Analysis and 

Nowcasting) developed by [11].  Storm properties such as 

echo top height, Mean and Maximum Reflectivity, area, 

volume, lifetime, propagation speed and direction are 

obtained using a subroutine of TITAN algorithm called 

Tracks2Ascii and a long term climatological statistics of 

convective storm properties over the eastern MT region is 

generated. We have used Era5 reanalysis products 

averaged over an area of approximately 300×300 km
2 

for 

large-scale environment. We considered key large-scale 

parameters that have frequently been associated with the 

convective ensembles with an aspiration to understand 

scale relationships in such a way that parameterizations of 

convection in the climate models could be improved. 

Those are CAPE, relative humidity at 650, and moisture 

convergence. To make large-scale environment and small-

scale convective cells concurrent in time, we interpolated 

linearly 6-hourly reanalysis products to the temporal 

resolution of the radar data. 

 

3 Results and Discussion  

3.1 Storm-to-Large scale Relationship: 

Dynamics, Thermodynamics and Stability  
 

Given the large-scale variables as mentioned in the above 

section, the investigation is divided in to three overall 

categories: dynamics, thermodynamics, and atmospheric 

stability. The chosen variables are vertically integrated 

moisture convergence, mid-tropospheric relative humidity 

and CAPE as representatives of dynamics, 

thermodynamics, and Stability respectively.  

 

 

 

Figure 1 2D Histogram of (a) Moisture convergence and 

Convective Precipitation Rate (b) Moisture Convergence 

and Mean Area 

We explore how the small-scale convective state storm 

stratifies with the mid-tropospheric environment. We 

achieve this by constructing 2D histogram of small scale 

convective storm parameters as function of large-scale 

environment.  Figure 1(a) and 1(b) explain the 

relationship of convective precipitation and area with the 

moisture convergence. There is generally higher (lower) 

convective precipitation associated with positive 

(negative) moisture convergence. A similar relationship of 

area can be observed with moisture convergence as that of 

convective precipitation rate recommending that the larger 

moisture convergence is associated with increased 

Convective precipitation through increasing convective 

precipitation area. This result provides observational 

support for a finding from cloud-resolving modeling 

studies that convection responds to an increase in 

(a) 

(b) 



prescribed model “forcing” predominantly through an 

increase in convective area and also confirms other 

observational finding over a similar monsoonal setting 

over Darwin, Australia [12, 13]. However, some of the 

higher convective precipitation occurs when there is net 

divergence and hence likely subsiding. Therefore, the 

relationship observed here with two datasets does not 

explain the cause and effect of convection used as the 

fundamental assumptions in convective parameterization 

that is Convective heating and precipitation induce 

moisture convergence, and in turn high moisture 

convergence trigger convection more likely [5].   

 

 

 

Figure 2 Distribution (Kernel density estimates) for (a) 

35 dBZ Top Height and (b) “% Volume >40 dBZ” as 

functions of RH650. 

 

Moving on to the relationship involving mid-level 

humidity (2D histogram, not shown here), we notice 

lowest mid-tropospheric relative humidity is found when 

there are very few cells occurrence. To understand the 

relationships of these rarely occurring cells in a drier 

midlevel conditions we look in to different perspective on 

how convective storm varies as a function of mid-

tropospheric moisture in different range bins and shown 

in the figure 2 (a) and (b). The storm top height and 

intensity parameter probability distributions are found and 

sorted into deciles based on midlevel moisture. Blue 

colors represent normalized distributions with the largest 

moisture and red-to-yellow colors with low moisture. 

Probability distribution of top height as a function of 

humidity, explains that the deepest cells, however very 

few in numbers, are associated with driest conditions.  

While, most populated cell top heights are in Congestus 

mode, these cells are associated with moist midlevel 

conditions.   

 

 

Figure 3 Distribution (Kernel density estimates) for (a) 

Cell area and (b) Precipitation rate as a function of CAPE. 

 

Also these most populated cells tend to have relatively 

lower value of maximum reflectivity as well as “% 

Volume >40 dBZ”. As the environment tends to dry, there 

is a right shift in the distribution towards higher value of 

maximum reflectivity, height of maximum reflectivity and 

rain rate intensity. This implies that in a moist 

environment, convective cells are numerous with less 

intensity; however, in drier conditions, while there are 

fewer convective cells, the individual cells are likely to be 

more intense.   

 

Next, we examined the relationship involving 

instability/energetics parameter say CAPE (Figure 3). 

There is no such systematic relationship between storm 

scale convection and CAPE is observed which an 

assumption is made in the convective parameterization 

scheme known as CAPE closure. While storm area likely 

to increase with increasing CAPE values for low to 
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moderate values, there is a tendency of decreasing area in 

higher range bins of CAPE. The pattern of the 

relationship of cell area to CAPE is also very similar to 

the relation of Precipitation rate and CAPE (figure 3a and 

3b), indicating a stronger influence of CAPE on intensity 

than on area-mean rainfall. Therefore, CAPE influences 

convective cell area and number in a disproportionate way 

such that it is a good indicator of convective intensity 

rather than areal mean convection. Thus, CAPE is 

unlikely to be a good predictor for a connective 

parameterization, which aims at describing the area-

averaged behavior.  

 

3.2. Variability in the relationships: How 

stochastic is the MT Convection??  
 
Though our findings are statistically robust, we 

acknowledge significant variance in the relationships 

which is quoted as a source of systematic errors arising 

from subgrid-scale fluctuations in the numerical model.  

One way to reduce such error and estimating the model 

uncertainty is to introduce the SPS in the convective 

parameterization. Since, Convective parameterization 

schemes aim at describing the area-mean behavior 

convection in the model grid-box; we defined areal mean 

convection in the equation (1): 

 

        ----- (1) 

 

Where P is Precipitation rate intensity,   is precipitation 

area, and I is convection Intensity. Though the 

quantitative measures of the storm-environment scales 

relationship is not the goal this section, it is worthwhile to 

try and further explore some simple statistical properties 

of the relationships, and to see how stochastic the 

relationship is. Here, the goal is to examine whether storm 

scale Convection shows a more systematic relationship 

with measures related to large-scale convergence 

compared to measures related to energetics (e.g., CAPE). 

We achieve this by finding the mean and standard 

deviation of convective storm parameter I in different 

range bins of moisture convergence. Mean and standard 

deviation convective Intensity (I) values are calculated in 

range bins of moisture convergence grouped into 7 

equally sized bins (figure 4). A close look on the figure 4 

figure out that the mean and standard deviation of storm 

scale convection increases with increasing moisture 

convergence for positive values (strong external dynamic 

forcing) while a reverse relationship is observed in the 

negative (i.e., weak external dynamic forcing). Therefore, 

storm scale Convection bears a more systematic 

relationship with large-scale environment measures 

related to large- scale convergence compared to 

instability/energetics. The magnitude of the randomness 

in the convective strength and large-scale relationship is 

found to be decreasing as a function of the increasing 

large‐scale dynamic forcing itself. This explains the 

selective nature of storm scale convection in the large-

scale environment over an Indian MT region that the 

storm scale convection is likely to more deterministically 

relate to the large scale moisture convergence during 

strong external dynamic forcing (i.e. Monsoon). However, 

the relationship is more stochastic when the dynamic 

forcing is weak. Thus, we find a Stochastic to Quasi-

deterministic transition nature of convection in the 

observations.     

 

 

Figure 2 Mean and Standard deviation of convection 

intensity as a function of moisture convergence 

 
 

Therefore, if we go for QE parameterization schemes in 

numerical models for Indian summer Monsoon 

Predictions the fluctuation arising in the relationship 

during the weak forcing condition may lead to miss the 

adequate representation of very strong localized 

convection with high CAPE (i.e. extreme events) and 

thus, it may underestimates the monsoon rainfall 

prediction.  
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