


Advanced Antenna Technology with CRLH Metamaterial for Radiative Wireless Power Transfer

T. Yamamoto⁽¹⁾, K. Matsumoto⁽¹⁾, and H. Kubo⁽¹⁾

(1) Graduate School of Sciences and Technology for Innovation, Yamaguchi University

In a general radiative WPT system, some array antennas, for example, linear array antennas, and microstrip array antenna[1], are used as a transmitting and a receiving antenna. Some power divider/combiner circuits are required in these array antennas. For transmitting/receiving large power in radiative WPT, large antenna aperture is one of the effective methods. A lot of antenna elements are necessary for realizing of the large antenna aperture, then a lot of power divider/combiner circuits are also required. These circuits can cause a serious loss in a radiative WPT system. Our reserch group are studying on an new-type antenna for overcomming of the loss[2]. In this paper, an advanced antenna with composite right-/left-handed (CRLH) metamaterial[3] for radiative wireless power transfer (WPT) is discussed.

Figure 1 shows a structure of a proposed CRLH metamaterial (a) and a dispersion characteristic of the material (b). This structure is known as "Dirac-cone" metamaterial[4], and this structure can have a balanced dispersion characteristic with appropriate structural parameters. At Γ -point frequency in the dispersion characteristic shown in Fig.1, a zeroth-order resonance phenomenon can be obtained, and a zeroth-order resonance antenna can be realized by using the resonance mode. One of the issues in this structure is low radiation efficiency. The radiation efficiency depends on a gap between metallic patches in adjacent unit cells. Therefore, an optimum gap is designed for maximizing of the radiation efficiency. A zeroth-order resonance antenna composed of Dirac-cone metamaterial is fabriccated, and some characteristics of the fabricated antenna are measured. The manufactured antenna is shown in Fig.1 (c). In our presentation, the measured results will be shown.

Figure 1. A proposed CRLH metamaterial. (a) a unit cell and a structure. (b) a balanced dispersion characteristic (c) a fabricated zeroth-order resonator antenna.

References

- S. Kojima, N. Shinohara, and T. Mitani, "Evaluation of loss in microwave power transfer between array antennas in fresnel region," *IEICE Technical Report*, WPT, 2017-83 (2018-03), Mar. 2018, pp.79–83.
- [2] K. Matsumoto, T. Yamamoto, and H. Kubo, "Study on radiation efficiency of zeroth-order resonator antenna composed of Dirac-cone metamaterial with metal patches arranged periodically," *Proc. of the 21st IEEE Hiroshima Section Student Symposium*, B-1-12, Dec. 2019, pp.300–302.
- [3] A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," *IEEE Microw. & Wireless Components Lett.*, **14**, 2, Feb. 2004, pp.68–70.
- [4] K. Sakoda, "Dirac cone in two- and three-dimensional metamaterials," *Optics Express*, **20**, 4, Feb. 2012, pp.3898–3917.