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Abstract

This paper presents a derivation of the antenna covariance
matrix of a 3-D Rayleigh fading multi-input multi-output
(MIMO) channel. The receive antenna covariance is calcu-
lated by considering the impinged electric field as random
process to capture the true statistical behavior of the fad-
ing channel. Furthermore, this paper attempts to bridge the
gap between antenna engineering and wireless communica-
tion by considering several practical aspects of the antenna
and the physical channel like the relative size of the aper-
ture of the whole antenna array and the relative size of the
scatterers, active pattern of the array elements, etc. The
contemporary millimeter wave massive MIMO communi-
cation system is considered. It is shown that the expression
of the correlation coefficient, obtained in this work, reduces
to the well known expression of the correlation coefficient
of Clark’s model in a special case.

1 Introduction

Massive multi-input multi-output (MIMO) technology has
become one of the main enabling technologies of the 5G
and forth coming standards of wireless communication
[1, 2]. MIMO channel is generally modeled using four
approaches: (i) Antenna Correlation Approach (ACA) (ii)
Geometry Based Stochastic Approach (GBSA) (iii) Corre-
lation Based Stochastic Approach (CBSA) and (iv) Ray-
Tracing Approach (RTA) [3]. Here we attempt to bring
ACA, generally used by antenna engineers [4] and CBSA,
commonly used by experts of wireless communication to-
gether [5]. In the previous works, the electric field (~E ), im-
pinged on a receive antenna is considered as a random vari-
able having probability density function (pdf ) p~E (θ ,φ). In
contrary, a through statistical analysis of this topic is carried
out in this paper, where ~E is duly treated as a random pro-
cess. Further, the active radiation pattern of the antennas is
considered to take into account the mutual coupling. Mod-
eling a wireless channel presently has got a special impor-
tance [2], because it is not only computationally expensive
to estimate the channel state information (CSI), but knowl-
edge of imperfect CSI compels the communication engi-
neers to use far more complicated algorithms as well [6].

2 Model of Signal Received in Multipath
Fading Channel

Let us consider communication over a Rayleigh fading
MIMO 3-D wireless channel with a static transmitter
(Tx) and a dynamic receiver (Rx), moving with velocity
~vRx(θ ,φ). We also assume that the interacting objects (IO)
are static. The Tx has Nt antennas and the Rx has Nr anten-
nas. Let x ∈ CNt×1 be the transmitted signal vector and
y ∈ CNr×1 be the received signal vector. In a MIMO chan-
nel, the received signal is related to the transmitted signal
in the following way

y = Hx+w, (1)

where H ∈ CNr×Nt is the complex channel matrix and
w ∈ CNr×1 is the additive white Gaussian noise (AWGN)
vector, added at each receiving antenna and the correspond-
ing analog circuitry. Here, hi, j = H(i, j) is the channel gain
of the communication link between the j−th Tx and the
i−th Rx antennas. However, in the case of down link of
massive MIMO channel, there appears a Nt ×Nr channel
precoder matrix D due to digital precoding and we write
x = Ds, where s is the message signal, to be transmitted to
a single user, and x is the transmitted signal [1]. The general
case of multi-user communication is bit more complicated
and that is kept outside the scope of this summary paper.
This channel matrix can be written in the form [2, 3]
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is the transmit antenna covariance matrix. Here, Hu is the
Nr ×Nt uncorrelated channel matrix and its elements are
identically and independently distributed (i.i.d.).

Let ~GAi(θ ,φ) = GAi
θ
(θ ,φ)θ̂ +GAi

φ (θ ,φ)φ̂ be the far-zone
radiated electric field of Ai, when Ak(for k = 1,2, ..., i−
1, i+ 1, ...,N) are terminated at matched load. For an in-
cident electric field ~EAi(θ ,φ), the open-circuit voltage in-
duced at the terminal of Ai, is given by [4, 7]

vi =
∫

φ

∫
θ

~GAi(θ ,φ) · ~EAi(θ ,φ) dθdφ . (3)

In modern I/Q communication, generally the transmitted
signal takes the following form s(t) = Re{u(t)e jωct}, where



u(t) is the low-pass equivalent of the transmitted signal
and ωc is the carrier frequency. We assume that the chan-
nel does not change during a symbol duration. Therefore,
without loss of generality, we drop u(t) from the forthcom-
ing expressions. In the case of Rayleigh fading channel,
both the θ and φ polarizations of the electric field, incident
on an antenna ‘A’ in an angle (θ ,φ), can be expressed as
[8]

E A
θ (θ ,φ) = IA

θ ,φ (θ ,φ)cosωct−QA
θ ,φ (θ ,φ)sinωct, (4a)

with IA
θ ,φ (θ ,φ) = Aθ ,φ (θ ,φ)cos(ωDt +ψθ ,φ (θ ,φ)), (4b)

and QA
θ ,φ (θ ,φ) = Aθ ,φ (θ ,φ)sin(ωDt +ψθ ,φ (θ ,φ)). (4c)

However, in this paper, we deal with the in-phase com-
ponent only to comply with the space constraint. So, the
electric field incident on the i−th antenna is

E Ai
θ ,φ (θ ,φ)=Aθ ,φ (θ ,φ)cos(ωDt+ψdi +ψθ ,φ (θ ,φ))cosωct,

(5)
Here Aθ (θ ,φ) and Aφ (θ ,φ) are the random amplitudes of
unknown probability distribution function (PDF) i.e. for
any given {θ ,φ}, Aθ and Aφ are two random variables.
Aθ (θ ,φ) and Aφ (θ ,φ) depend upon path-loss and shad-
owing. ωD(θ ,φ) is the doppler frequency shift experi-
enced by the receiving antenna moving with velocity ~vRx
and ωD(θ ,φ) can be expressed in terms of the carrier fre-
quency and velocity of the receiver

ωD(θ ,φ) = |~vRx(θ ,φ)|ωc cosξ (θ ,φ)/vp, (6)

where vp is the phase velocity of the propagating wave and
ξ (θ ,φ) is the angle subtend between direction of propaga-
tion of the incident wave and the direction of ~vRx. In (4b),
(4c) and (5), ψθ (θ ,φ) and ψφ (θ ,φ) are the random phase
shifts i.e. for any given {θ ,φ}, ψθ and ψφ are two ran-
dom variables. The random phase shift depend upon path
length and phase shift due to reflection on lossy scatterers.
As the phase shift changes much faster than amplitude, the
standard practice is to assume uniform PDF of ψθ (θ ,φ)
and ψφ (θ ,φ) [8]. Aθ ,φ (θ ,φ) and ψθ ,φ (θ ,φ) have distribu-
tion other than normal distribution, but we consider infinite
number of incoming rays in (3) due to presence of micro-
scatterers. Consequently, the central limit theorem applies
and the envelope of I/Q modulated vi becomes Rayleigh
faded.

For sub-6 GHz Massive MIMO antenna, the amplitude of
the electric field, incident on different antennas may vary
because of large physical aperture of the whole array. To
avoid this complication, for the time being, we assume that
the amplitude of field incident on all the antenna elements
are same. This approximation remains valid as long as the
distance between antennas remain small with respect to the
size of the scatterers. So, we consider a mm-wave massive
MIMO communication system.

The phase of the incident field, however, is not same for
all the array elements, because of the phase shift ψdi due
to spatial separation of the antennas (see (5)). In massive
MIMO, 2-D and even 3-D antenna arrays have been at-
tempted, but we consider 1-D array in this summary paper

to keep the treatment simple. Without loss of generality, we
assume that the antennas are positioned along X−axis with
a separation di. In the case of mm-wave Massive MIMO
communication system, we consider the angle of arrival
(AoA) to be same for all the array elements. Under these
assumptions, the incoming waves received at Ai experience
an extra phase shift of amount ψdi relative to phase center;
and ψdi is given by

ψdi = kdi sinθ cosφ , (7)

where k is the propagation constant and (θ ,φ) is the AoA.

We know that the amplitude of an incident wave de-
pends upon the path-loss and shadowing, whereas its phase
mainly depends upon the path length. Therefore, we as-
sume the amplitude and the phase of the incident waves are
statistically uncorrelated.
Assumption− I :

Aθ ·ψθ = Aθ ·ψθ , and (8a)

Aφ ·ψφ = Aφ ·ψφ (8b)

As two polarizations propagate independently, we assume
ψθ and ψφ are uncorrelated i.e.
Assumption− II :

ψθ ψφ = ψθ ψφ (9)

We also assume a “Kronecker Delta" channel model [8],
where the electric fields incident at different angle of AoA
are statistically uncorrelated.

Assumption− III :
For (θ1 6= θ2) and/or (φ1 6= φ2),

Eθ (θ1,φ1) ·Eθ (θ2,φ2) = Eθ (θ1,φ1) ·Eθ (θ2,φ2), and
(10a)

Eφ (θ1,φ1) ·Eφ (θ2,φ2) = Eφ (θ1,φ1) ·Eφ (θ2,φ2). (10b)

3 Derivation of Correlation Coefficient

The combined cross correlation coefficient between vi and
v j is given by:

ρviv j =
(vi− vi) · (v j− v j)

∗[
(vi− vi)

2 · (v j− v j)
2
] 1

2
. (11)

In order to evaluate (11), we compute vi, v j, vi.v j∗, |vi|2

and
∣∣v j
∣∣2. Using Assumption− I and utilizing the fact that

cos(ωDt +ψdi, j +ψθ (θ ,φ)) = 0, we get ~EAi(θ ,φ) = 0 and
~EA j(θ ,φ) = 0. Therefore, from ( 3) we get vi = v j = 0.
Consequently, (11) becomes

ρviv j =
vi · v j∗[
|vi|2·

∣∣v j
∣∣2] 1

2
. (12)
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φ
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+
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Ω

GAi
φ (Ω)E Ai

φ
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] [∫
Ω

GA j
θ
(Ω)E A j

θ
(Ω) dΩ

]∗
(13)

3.1 Derivation of vi·v j
∗

Using (1) and (2) we get E[vi · v∗j ], which is given in (13) at
the top of the next page. Let us name the four terms of (21)
as E1,E2,E3 and E4 respectively. Using Assumption− III
we can write

E1 =
∫

Ω j

∫
Ωi

GAi
θ (Ωi)G

A j
θ

∗
(Ω j)[E Ai

θ
(Ωi)E

A j∗
θ

(Ω j)] dΩidΩ j

=
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θ j ,φ j

[
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θi,φi

GAi
θ (θi,φi)G

A j
θ

∗
(θ j,φ j)sinθi sinθ j·

[E Ai
θ
(θi,φi)E

A j∗
θ

(θ j,φ j)] δ (θi−θ j)δ (φi−φ j)dθidφi]dθ jdφ j
(14)

Therefore,
E1 =

∫
Ω

GAi
θ (Ω)GA j

θ

∗
(Ω) µθθ dΩ, (15a)

Similarly,

E2 =
∫

Ω

GAi
φ (Ω)GA j

φ

∗
(Ω) µφφ dΩ, (15b)

E3 =
∫

Ω

GAi
θ (Ω)GA j

φ

∗
(Ω) µθφ dΩ, (15c)

E4 =
∫

Ω

GAi
φ (Ω)GA j

θ

∗
(Ω) µφθ dΩ, (15d)

where µθθ = [E Ai
θ

E A j
θ

], µφφ = [E Ai
φ

E A j
φ

], µθφ = [E Ai
θ

E A j
φ

],

µφθ = [E Ai
φ

E A j
θ

]. Using (5) we get

µθθ =[E Ai
θ

E A j
θ

]

=cos2
ωct ·A2

θ
(Ω) · cos(ωDt +ψdi +ψθ (Ω))

cos(ωDt +ψd j +ψθ (Ω)) (16)

Using basic trigonometry and probability theory we get

µθθ = Pθ (Ω) · cos(ψdi −ψd j)cos2
ωct, (17)

where Pθ (Ω) = 1
2 A2

θ
(Ω) is the power carried by the

θ−polarization of the incoming wave.
Similarly,

µφφ = Pφ (Ω)cos(ψdi −ψd j)cos2
ωct, (18)

where Pφ (Ω) = 1
2 A2

φ
(Ω) is the power carried by the

φ−polarization of the incoming wave.

For cross-polarized components we use Assumption II (9)
to get

µθφ = µφθ = 0 (19)

Therefore,

vi·v j∗ =

[∫
Ω

GAi
θ (Ω)GA j

θ

∗
(Ω) Pθ (Ω)cos(ψdi) dΩ∫

Ω

GAi
φ (Ω)GA j

φ

∗
(Ω) Pφ (Ω)cos(ψd j) dΩ

]
cos2

ωct (20)

3.2 Derivation of |vi|2 and
∣∣v j
∣∣2

Using (1) we get (21). Let us name the four terms of (27)
as E5,E6,E7 and E8 respectively. Using Assumption− III
we can write

E5 =
∫

Ω j

∫
Ωi

GAi
θ (Ωi)GAi

θ

∗
(Ω j)[E Ai

θ
(Ωi)E Ai∗

θ
(Ω j)] dΩidΩ j

(22)

Therefore,

E5 =
∫

Ω

∣∣GAi
θ (Ω)

∣∣2 Pθ (Ω)cos2
ωct dΩ

Similarly,

E6 =
∫

Ω

∣∣∣GAi
φ (Ω)

∣∣∣2 Pφ (Ω)cos2
ωct dΩ, (23a)

And E7 = E8 = 0 due to Assumption− II. Therefore,

∣∣(vi, j)
∣∣2 = ∫

Ω

∣∣∣GAi, j
θ

(Ω)
∣∣∣2 Pθ (Ω)cos(ψdi, j).cos2

ωct dΩ

+
∫

Ω

∣∣∣GAi, j
φ

(Ω)
∣∣∣2 Pφ (Ω)cos(ψdi, j).cos2

ωct dΩ (24)

Therefore, correlation between vi and v j is given by ρviv j as
shown in (25) in the next page.

4 Derivation of Correlation Coefficients for
Omnidirectional Antennas with Uniform
Exposure in the Azimuthal Plane

For omnidirectional antennas GAi
θ
(θ ,φ) = GA j

θ
(θ ,φ) = Gθ

and GAi
φ (θ ,φ) = GAi

φ (θ ,φ) = Gφ . Similarly, for uniform
exposure Aθ (θ ,φ) = Aθ and Aφ (θ ,φ) = Aφ . In the Clark’s
model, incident waves comes uniformly in the azimuthal
plane. Therefore, from (27) we get[
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Omni =
1
2
A
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∫
π
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cos(ψd)sin δ (θ −π/2)dθdφ
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1
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= πA (−1)n
∫
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φ=0
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Therefore,
[
v1v2∗

]Clark
Omni = πA Jo(kd), (26)
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where, Jo is the zero-th order Bessel’s function of first kind
and A =

(
|Gθ |2 Pθ +

∣∣Gφ

∣∣2 Pφ

)
. Substituting d = 0 in (13)

we get[
v1v1∗

]Clark
Omni = πA and

[
v2v2∗

]Clark
Omni = πA . (27)

Therefore, from (16)

ρ
Clark
v1v2

= Jo(kd). (28)

5 Conclusion
A correlation coefficient has been computed considering
the impinged electric field as a random process and the
final result has been verified against the special case of
Clark’s model for which we know the closed form expres-
sion of correlation coefficient. Notably, the expression of
the correlation coefficient, obtained in this paper can be
computed using the concept of cross-correlation Green’s
function (CCGF) [9] without determining the farfield ra-
diation pattern of the antennas. However, it is worth men-
tioning that indoor channels have depolarization effects and
shows that Assumption− II is not valid inside a common
factory hall [10]. In such cases, an antenna-statistics com-
bined channel modeling becomes challenging.
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