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Abstract

Currently, the research of channel modeling pays more at-
tention to time-varying channels, e.g., vehicle-to-vehicle
(V2V) communications. Meanwhile, it is found from many
measurements of wireless channels that the multipath com-
ponents (MPCs) are usually distributed in groups, which is
considered as the clustered MPCs. This paper thus propos-
es a novel clustering algorithm for the time-varying chan-
nels, which clusters the dynamic MPCs by using the evo-
lution patterns over time. Through the evaluation based on
the realistic V2V measurement data, the proposed algorith-
m achieves relatively better performance compared with the
conventional methods.

1 Introduction

Channel modeling plays an important role in wireless com-
munication system design. Supported by a large body of
channel measurements [1, 2], it is found that the multipath
components (MPCs) usually distribute in groups in wireless
channels. Such that, considering the trade-off between the
computation complexity and the accuracy of channel mod-
els, most of the current research models wireless channel
based on the structure of the MPCs’ cluster, e.g., COST
2100 [3], 3GPP Spatial Channel Model [4], and WINNER
[5]. Parameterization of the models from measurements re-
quires estimation of the MPCs’ parameters, and subsequent
clustering of MPCs.

Generally, most channel measurements in the past are
conducted to collect channel impulse response or trans-
fer function in typical channel scenarios, e.g., urban, sub-
urban, or tunnel. The MPCs are extracted by using
some high-revolution-parameter-estimation (HRPE) algo-
rithms, e.g., the space-alternating generalized expectation-
maximization (SAGE) [6] or RiMax [7]. Next, during the
clustering process for channel modeling, the MPCs that
show similar characteristics, i.e., delay, power, angle of ar-
rival (AOA), and angle of departure (AOD), are considered
as one cluster. In this case, the clustering approaches for
the MPCs in each snapshot, namely ‘static clustering’, have

been widely studied in the past, e.g., [8] proposes a kernel-
power-density-based algorithm, which exploits the distri-
bution density of the MPCs in the current snapshot, and [9]
proposes a power weighted clustering algorithm based on
the K-Means method.

Meanwhile, more and more research pays attention to the
time-varying wireless channels instead of the static chan-
nels, e.g., the vehicle-to-vehicle (V2V) communication
channels [10, 11, 12] and the unmanned aerial vehicle
(UAV) communication channels [13]. To evaluate and ana-
lyze the time-varying channels, the evolution feature of M-
PCs/clusters need to be characterized. Such that, the clus-
tering problem changes from the ‘static clustering’ to ‘time-
varying clustering’, which brings more challenges:

• To do a time-varying clustering, MPCs need to be not
only clustered but also tracked over time.

• How to exploit the evolution pattern of MPCs for clus-
tering is another challenging problem.

One of the common ways is to conduct the static cluster-
ing for the MPCs in each snapshot, then track the identi-
fied clusters over time [14, 15, 16, 17]. In this case, simply
conducting the static clustering first and tracking afterward
cannot well utilize the evolution pattern of the MPCs. Nev-
ertheless, the evolution feature of the MPCs is actually an
important characteristic since this feature correlates to the
actual movements or changes of the scatterers [18] in the
propagation environments.

Therefore, by exploiting the time-evolution characteristic,
this work proposes a dynamic clustering approach that can
well recognize the evolution pattern of MPCs during the
clustering process. The rest of this paper is organized as
follows. Section II describes the problem and the details of
the proposed algorithm. Section III presents the evaluation
based on the measurement data. Finally, Section IV draws
the conclusion.



2 Time-varying Clustering Algorithm

This section first describes the clustering problem for time-
varying wireless channels, and then elaborates on the de-
tails of the proposed algorithm.

2.1 Problem Description

In any wireless channels, the signal propagates from the
transmitter (Tx) to the receiver (Rx) via different path-
s, giving rise to different MPCs. As mentioned before,
the parameters of MPCs in each snapshot can be extract-
ed by using the HRPE methods. The most general chan-
nel representation is then the double-directional channel
model [19], which represents channel as the sum of M-
PCs with complex amplitude α , delay τ , AOD ϕT , ele-
vation of departure θT , AOA ϕR, elevation of arrival θR,
and Doppler ∆ f 1. We consider M snapshots of data, m =
1,2, · · · ,M, where each snapshot contains a number of Nm

MPCs. Thus, the n-th MPC in the m-th snapshot can
be represented by the multi-dimensional parameter vector
xm

n = [αm
n ,τm

n ,ϕ m
T,n,θ m

T,n,ϕ m
R,n,θ m

R,n,∆ f m
n ],n = 1,2, · · · ,Nm.

The goal of the algorithm is to identify dynamic clusters
in the time-varying channels. Apparently, it requires both
tracking and clustering of the MPCs extracted in each snap-
shot. As mentioned before, utilizing the evolution pattern of
the MPCs in the parameter space can improve the accuracy
of clustering. Therefore, the proposed algorithm identifies
the trajectory of each MPC first, then clusters MPCs based
on the identified trajectory.

In this case, the MPCs are clustered considering not only
the current parameters but also the time-evolution pattern
in the history snapshots as well as the future. Note that, this
approach can only serve for the off-line analysis, where all
the processes of parameter estimation, tracking and clus-
tering are conducted offline. This allows the method to i-
dentify different clusters that may temporally have similar
channel characteristics but generally show different propa-
gation characteristics, i.e., different evolution patterns.

2.2 Algorithm Description

2.2.1 Multipath Components Tracking

To analyze the time-evolution characteristic of channels,
the MPCs need to be tracked over consecutive snapshots.
In the past, most of the MPCs tracking algorithms can be
roughly divided into two categories: threshold-based track-
ing, i.e., MPCs are tracked based on a fixed or a dynam-
ic threshold [20]; and minimum distance-based tracking,
i.e., MPCs are tracked based on the minimum distance a-
mong each pair [15, 17]. For time-varying channels, it is
usually difficult to select a threshold, whether it is fixed or
dynamic, for MPCs tracking due to the fact that channel

1Note that the elevation domain may not be considered in some cases,
e.g., the data are collected by using a horizontal uniform linear array.
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Figure 1. Illustration of different trajectories between the
MPCs. xm

i and xm+1
i are the MPCs in m-th snapshot and

m+ 1-th snapshot, respectively, whereas Di is the distance
between different MPCs.

characteristics change over time. We thus use the mini-
mum distance-based solution here. Specifically, there are
two types of minimum distance-based tracking: local min-
imum distance-based, i.e., the MPCs pair having the mini-
mum distance is associated and removed first, then looking
for the next MPCs pairs that have the minimum distance
[17]; and global minimum distance-based, i.e., tracking M-
PCs by seeking the globally minimum distance of all M-
PCs pairs. Apparently, the local minimum distance-based
method usually leads to a locally optimum result, as shown
as {D2,D3} in Fig. 1, where the MPCs pair of xm

1 and xm+1
2

has the local minimum distance D2. However, the global
optimum result of Fig. 1 should be {D1,D4}.

To achieve high accuracy of tracking, the MPC tracking
method developed in [15] is conducted in this work. As il-
lustrated above, the tracking process between the m-th and
the m+1 snapshots can be performed by seeking the global
minimum distance of all MPCs, which can be expressed as

Dm,m+1
min = arg min

Dm,m+1

Nm

∑
i=1
j=1

D(xm
i ,x

m+1
j ), i ̸= j (1)

where D(xm
i ,x

m+1
j ) is the distance between the i-th MPC

and the j-th MPC in the two consecutive snapshots, and
Dm,m+1 is the set of all possible trajectories between these
snapshots. It is noteworthy that, to compare the differences
among different channel characteristics, i.e., delay, power,
and angle, we use the normalized Euclidean distance here.

2.2.2 Multipath Components Clustering

As mentioned before, most of the existing clustering meth-
ods group the MPCs based on the current channel character-
istics, and extend the clustering result into time-domain by
using tracking. This paper proposes a novel time-varying
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Figure 2. Illustration of the key idea of time-varying clus-
tering.

clustering algorithm that exploits the evolution pattern of
the MPCs.

To capture the evolution pattern of the MPCs for clustering,
the evolution of the MPCs in the history snapshots and in
the future snapshots, which can be obtained since the clus-
tering is processed offline after the tracking, is considered
as the clustering objects instead of the individual MPCs.
To do so, we define the MPCs in the history and future s-
napshots as the companion clustering members, which are
considered during the clustering process but are not account
for as the clustering results. Fig. 2 gives the key idea of the
proposed method, where the blue squares/dots are the com-
panion clustering members and the red/green squares/dots
are the clustering results.

Similar to the tracking process, the normalized Euclidean
distance is used to measure the difference between the dif-
ferent evolution patterns. Let Dli denote the li-th trajectory
obtained by the tracking process, which is plotted as the
dashed line in Fig. 2. It is noteworthy that, to avoid the im-
pact of evolution pattern in history which is far away to the
present, we define a sliding window ∆T , only the evolution
trajectories within the sliding window will be considered
for the clustering. Such that, assuming two MPCs xa and
xb belong to two trajectories Dla and Dlb , and the difference
between the evolution pattern of these two MPCs can be
expressed as

D(xa,xb) = ∑
ti∈∆T,xa∈Dla ,xb∈Dlb

N (||xa,ti −xb,ti ||2), (2)

where N is the normalized function. By using this mea-
sure, the differences among all the evolved MPCs can be
obtained for further clustering. As for the further cluster-
ing stage, we can conduct the conventional static clustering
method since the distance D(xa,xb) already contains the d-
ifference of the evolution pattern. In this work, we use the
Kernel-power-density clustering method in [8] to cluster the
evolved MPCs.

(a)

(b)

Figure 3. Clustering results of (a) the proposed algorithm
and (b) the Kalman-filter-based clustering algorithm.

3 Evaluation

The V2V measurement campaign was conducted with a
self-built real-time MIMO channel sounder. The measure-
ments analyzed here were conducted on the campus sce-
nario. The details of the measurement campaign can be
found in [21].

To better evaluate the clustering accuracy, we evaluate the
proposed algorithm by comparing it with the conventional
Kalman-filter-based clustering algorithm. Fig. 3 presents
the clustering results of the proposed algorithm and the
Kalman-filter-based clustering algorithm, where the differ-
ent colors represent different cluster IDs. Apparently, the
clustering results from the proposed algorithm show more
globality of the evolution of MPCs, whereas the Kalman-
filter-based clustering algorithm fails to capture the time-
evolution characteristics of the MPCs, and thus the cluster-
ID is renewed after some snapshots.

4 Conclusion

In this paper, a time-varying clustering algorithm is pro-
posed which exploits the evolution characteristics of the
MPCs in the dynamic wireless channels. Evaluating by the
channel measurement data, the proposed algorithm is found
to have a better performance compared to the convention-
al Kalman-filter-based clustering algorithm. The results in



this paper can be useful for dynamic vehicular channel clus-
tering and modeling.
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