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Abstract 
 
The existence of wideband interference (WBI) would 
seriously reduce the SAR imaging quality and the 
following image interpretation accuracy. However, it is 
difficult to mitigate WBI owing to its large bandwidth and 
severe overlapping with useful signal. This paper proposes 
a WBI mitigation algorithm based on variational Bayesian 
inference. Firstly, a low-rank matrix factorization model 
for WBI is established according to the low rank 
characteristics of WBI in time-frequency domain. Then, we 
build the Bayesian posterior probability model for the low 
rank matrix factorization. Finally, the variational Bayesian 
inference is utilized to estimate the model parameters and 
reconstruct the WBI. The experimental results of WBI 
mitigation using measured WBI data acquired by the 
Sentinel-1 satellite have verified the effectiveness of the 
proposed algorithm. 
 

1. Introduction 
 

SAR has a wide range of applications in the fields of 
imaging identification, resource exploration, marine 
observation, geological mapping, and environmental 
perception due to its characteristics of all-day, all-weather, 
high resolution, and long-range. However, the measured 
SAR data always corrupted by WBI in the same frequency 
band [1]. The presence of WBI reduce the signal-to-noise 
ratio of the SAR echo and affects the quality of SAR 
imaging seriously. Meanwhile, WBI would yield 
inaccurate estimates of critical Doppler parameters (e.g., 
centroid and modulation rate), which would result in blurry 
and defocused SAR images. Moreover, WBI would reduce 
the accuracy of feature extraction and posing a hindrance 
to the SAR image interpretation [2]. In order to improve 
the performance of SAR imaging and image interpretation, 
it is necessary to develop interference mitigation method 
for SAR. 
 
Generally, WBI mitigation algorithms can be divided into 
two categories: data-driven algorithms [2-4] and model-
driven algorithms [5-6]. Data-driven interference 
mitigation algorithms mainly design a reasonable filter and 
separate the interference and useful signal in a specific 
domain. Tao et al. converted the problem of WBI 
mitigation into that of narrow-band interference (NBI) 
mitigation in instantaneous spectrum domain, and the 
eigensubspace filtering was utilized to mitigate NBI [2]. 

Zhang et al. combined the short-time Fourier transform 
(STFT) and wavelet transform to map the SAR echo in time 
domain into the wavelet domain, and WBI mitigation was 
realized by filtering the corresponding wavelet coefficients 
of the interference components [3]. However, they have a 
heavy calculation burden and may cause the signal loss. 
Fan et al. proposed an interference mitigation algorithm 
based on deep residual network. It performed by abundant 
time-frequency domain samples of simulated interference 
to extract interference features [4]. Nevertheless, it heavily 
relies on the large amount of interference corrupted SAR 
data. Model-driven interference mitigation algorithms 
mainly utilize mathematical models to characterize the 
SAR echoes and optimize the model parameters under 
specific criteria. Su et al. proposed an interference 
mitigation by utilizing Go Decomposition (GoDec) 
algorithm, which assumes the interference and useful target 
signal in time-frequency domain meet low rank and 
sparseness, respectively [5]. However, the performance of 
WBI mitigation is not good due to the lack of accuracy of 
the model. Huang et al. proposed a low-rank sparse 
decomposition based interference mitigation algorithm for 
SAR, which assumes that the interference is continuity 
along azimuth direction [6]. However, the continuity of 
WBI along azimuth direction does not always satisfy. 
Therefore, we need a more appropriate algorithm for WBI 
mitigation.  
 
This paper proposes a variational Bayesian inference based 
WBI mitigation algorithm for SAR. Based on the low-rank 
characteristics of WBI in the time-frequency domain, a 
low-rank matrix factorization model is established. 
Meanwhile, we built a Bayesian posterior probability 
model for the low-rank matrix factorization problem based 
on the assumption that the prior of noise follows the 
Laplace distribution. Moreover, variational Bayesian 
inference is utilized to estimate model parameters for 
reconstructing interference.  
 

2. Theory and Methodology 
 
2.1 Signal Modeling 

 
SAR data can be processed and analyzed pulse-by-pulse 
and the echo can be expressed as a linear superposition of 
original target echo, interference and additive noise. 

        s k x k i k n k= + +  (1) 



where k  represents the distance snapshot, and s , x , i , n  
denote received SAR echo, original target echo, 
interference and noise, respectively. Compared with the 
strong WBI, the original target echo has a noise-like 
distribution, so the echo model can be simplified as:  

      xs k i k n k= +  (2) 

Where      xn k n k x k  represents the superposition of 

useful target echo and noise. 
 
In order to explore the characteristics of the echo, STFT is 
used to represent the echo into the range time-frequency 
domain. 
  S I N   (3) 

where S , I and N  denote the time-frequency matrix of the 
received echo, WBI and noise, respectively. Fig. 1 shows 
two azimuth echoes from the measured WBI data acquired 
by Sentinel-1 satellite in time-frequency domain. 
Obviously, WBI only occupies a limited part in the time-
frequency domain, which can be considered as a low-rank 
matrix.  

 
Fig. 1 The representation of two measured WBI-
contaminated echoes in the time–frequency domain. 

The WBI mitigation problem can be transformed into low-
rank matrix recovery problem according to low-rank 
characteristics of WBI in the time-frequency domain [7], 
which can be modeled as 

 min H

p


U,V
S U V  (4) 

Where 
p

 is the P-norm of the matrix; r QU  and

r TV  are the factorization of the low-rank matrix, and 

 minr Q T ， . 

 
(a)                                         (b) 

Fig.2 The probability density of the measured SAR echo in 
the time-frequency domain. (a) The measured SAR echo in 
the time-frequency domain. (b) The probability density of 
the measured SAR echo. 
 
The probability density of the measured SAR echo in the 
time-frequency domain is shown in Fig.2. Obviously, the 
probability density of this data is more consistent with the 

Laplace distribution. Therefore, we can model the noise N
as a Laplace distribution in the time-frequency domain and 

set the coefficient p in equation (4) to 1. Moreover, we 

transform the Laplace distribution into a Gaussian scale 
mixed form [8]. 
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where  0,ij ijCN zN represents the complex Gaussian 

distribution with a variance of ijz and zero mean;  ijp z 

denotes the exponential distribution with a parameter of  . 

In addition, we assume that iu and jv obey the complex 

Gaussian distribution which is 
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Where 0 0 0 0, , ,a b c d  are the hyperparameters of the Gamma 

distributions. As following, the Bayesian posterior model 
is given based on the prior assumptions of the model 
parameters: 
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2.2 WBI Mitigation Methodology 

As is widely known, the variational Bayesian can be 
utilized to approximate the full posterior distribution. For 
the Bayesian posterior of (7), we give the approximate 

distribution and factorization results: 
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Parameters are estimated through variational Bayesian 
inference. 
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Then we reconstruct the WBI and remove the WBI in the 
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received echo to obtain the useful target echo, it can be 
expressed as 

      * *ˆ
H

x k s k ISTFT  
  

= U V  (10) 

where *U and *V represent the final estimation results of 
low rank factorization. We can obtain well-focused SAR 
image by performing the WBI mitigation algorithm pulse-
by-pulse. 
 

3. Experimental Results 
 
In this section, the effectiveness and robustness of the 
proposed WBI mitigation algorithm are verified based on 
the measured WBI-corrupted SAR data. Meanwhile, we 
compare the WBI mitigation performance with the GoDec 
algorithm, that the experimental results further demonstrate 
the superiority of the proposed WBI mitigation method. 
Moreover, qualitative and quantitative metrics are utilized 

to evaluate the performance of different interference 
mitigation algorithms.  
The measured SAR data was recorded by C-band Sentinel-
1 satellites of the European Space Agency (ESA) with a 
resolution of 5 m 20 m ( range  azimuth ). Fig.3 shows 

the SAR imaging results by applying different WBI 
mitigation algorithm. The measured SAR data is acquired 
by the Sentinel-1A in VH polarization mode. Fig.3 (a) 
represents the SAR imaging result without applying 
interference mitigation algorithm. It is obvious that the 
WBI has completely covered the scene and the SAR image 
is blurred. Fig.3 (b) and (c) are the SAR imaging results 
after applying GoDec and the proposed method. The SAR 
images show that some interference still exist in the scene 
which resulting in SAR image looks messy after applying 
the GoDec. For example, the coast contour is not clear 
enough. However, the SAR image after applying the 
proposed method looks more clear and the contrast 
between land and ocean is better. 

                    
 

（a）                                                           （b）                                                           （c） 
Fig.3 Mitigation results. (a)The SAR image without interference mitigation. (b) The SAR image after applying the GoDec 
algorithm. (c) The SAR image after applying the proposed algorithm. 

                    
 

(a)                                                            （b）                                                          （c） 
Fig.4 Mitigation results. (a)The SAR image without interference mitigation. (b) The SAR image after applying the GoDec 
algorithm. (c) The SAR image after applying the proposed algorithm. 

To further illustrate the superiority of the proposed method, 
we performed WBI mitigation experiments for another 
WBI measure data and the mitigation results shown in 
Fig.4. This measured SAR data is acquired by the Sentinel-
1B in VH polarization mode. Fig.4 (a) represents the SAR 

imaging result without interference mitigation, in which 
ships are covered by WBI. Fig.4 (b) and (c) shows the SAR 
imaging results after applying GoDec and the proposed 
method. It shows that there is some residual interference in 
scene and ships are blurred by WBI after applying the 
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GoDec in Fig.4 (b). However, it can be seen that WBI is 
well mitigated and ships are well-focused after applying 
the proposed method. 
 
In order to quantitatively analyze and compare the 
performance of different interference mitigation algorithm, 
we utilize a representative multiplicative noise ratio (MNR) 
as the evaluation index. MNR represents the average 
energy ratio of the weak scattering area to the strong 
scattering area in the SAR image. It can be defined as 

 
2 2

10
1 1

1 1
10log

N M

n m
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MNR I I
N M 

    
     

    
   (11) 

where N and nI represent the number of pixels of the weak 

scattering area and the corresponding pixel value; M and

mI represent the number of pixels of the strong scattering 

area and the corresponding pixel value. A smaller MNR 
demonstrate the contrast of SAR image is stronger, and 
more SAR image information recovered. Table 1 shows the 
SAR image quality evaluation. It can be seen that GoDec 
and proposed algorithm can both improve the quality of 
SAR image. Meanwhile, the MNR index of the proposed 
algorithm is better than that of the GoDec algorithm, which 
is consistent with the qualitative analysis results and 
indicates that its SAR image has better contrast and clearer 
contours. 

Table 1 SAR image quality evaluation for the measured 
WBI-contaminated data. 

         Method 
Data Original GoDec Proposed 

Method 
Sentinel-1A VH 5.49dB -5.87dB -10.09dB 
Sentinel-1B VV -7.08dB -12.41dB -14.90dB 

 

4. Conclusion 
 
This paper proposes a WBI mitigation algorithm based on 
variational Bayesian inference for SAR. We establish a 
low-rank matrix factorization model due to the low-rank 
characteristics of WBI in time-frequency domain. 
Meanwhile, we adopt the Laplace distribution as prior for 
noise and derive the posterior probability distribution of the 
low-rank matrix factorization model. Moreover, 
Variational Bayesian inference is utilized to estimate the 
parameters and reconstruct the WBI. Finally, the 
effectiveness and superiority of the proposed algorithm 
was verified based on two measured data acquired by the 
Sentinel-1 satellites. Meanwhile, the MNR is adopted to 
evaluate the performance of the WBI mitigation. The MNR 
evaluation results further demonstrate effectiveness of the 
proposed WBI mitigation algorithm. 
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