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Abstract

The Mid-Frequency Aperture Array (MFAA) of the Square
Kilometre Array (SKA) operating in the 450-1450 MHz
range is envisaged to have stations (subarrays) with ∼ 103

to ∼ 104 receive paths. Standard calibration procedures are
based on the array covariance matrix which, at this scale,
becomes extremely computationally expensive. Alterna-
tive, computationally cheaper approaches are in develop-
ment and some have been proven to work. In this paper, we
will focus on a method called self-holography, one of these
approaches. Previous studies on self-holography showed
that a bias in the gain estimates is caused by factors such
as signal interference and system noise. In this paper, we
investigate the effectiveness of reducing interference using
null placement and subsequently reducing the bias on the
gain estimates.

1 Introduction

Phased arrays have, for a long time, been a very attrac-
tive option for radio astronomy instruments. This is mainly
due to their electronic steering capabilities, which is a very
convenient alternative to mechanical steering. Additionally,
they can form multiple beams on the sky [1][2]. This en-
ables the exploration of interesting new science cases. The
Mid-Frequency Aperture Array (MFAA), designed to oper-
ate in the 450 - 1450 MHz range, is an extreme example of
this [3].

The MFAA is envisaged to have subarrays (or stations) that
have ∼ 103 to ∼ 104 receive paths. Calibration of these
subarrays is essential for achieving optimal beamforming
performance. Traditional calibration schemes make use of
the array covariance matrix, which implies that the com-
putational complexity scales with the square of the number
of receive paths [4][5]. Self-holography (SH) [6], which
is based on the correlation of the individual receive paths
against a signal from a reference beam formed by the full
array, aims to reduce the processing load to scale linearly
with the number of receive paths. The initial study in [6]
found that a bias in the gain estimates are observed that is
directly related to the signal to noise ratio (SNR) of the cal-
ibration measurements. In [7] it was concluded that this
can only be remedied by careful modelling of the system
noise. The closely related EPICal method [8] avoids this

bias by using a full source model. This method effectively
computes the full array covariance matrix during the data
prediction stage needed for calibration, which comes with
a computational cost.

In [9] a new rigorous approach is presented where it is
assumed that the reference beam provides sufficient isola-
tion of the calibration source. However, in reality, interfer-
ing sources will be present and it was determined that this
causes a bias in the gain estimates. In this paper we in-
vestigate the effectiveness of mitigating that bias using null
placement.

2 Self-holography

Assuming the narrowband condition holds, the output volt-
age x of an antenna receiving a signal s at time t can be
expressed as

x(t) = g · s(t)+n(t), (1)

where g is the complex valued receive path gain, which is
assumed to be constant over the calibration interval, and
n(t) is the noise in the receive path. If the antenna output
voltage is exactly Nyquist sampled, the number of real val-
ued samples produced for an integration time of τ seconds,
will be equal to N = 2 fmaxτ . For an array of P receive paths,
we can stack the measured samples for all receive paths in
a vector x(t) and stack all these vectors in a P×N matrix
X = [x(0), . . .x((N−1)T )]T . Similarly, we can stack the
samples of the signal and noise in matrices S and N, so that
we can describe the entire measurement by:

X = GS+N, (2)

where G is a diagonal matrix with the gains of the receive
paths placed on the main diagonal.

A reference beam signal y is obtained by multiplying the
measured signals with the beamformer weights w:

y = wHX, (3)

where w is a P× 1 vector containing the weights for each
antenna, and y is the 1×N row vector containing the ref-
erence signal samples. The superscript H indicates the Her-
mitian transpose.



The expected value of the crosscorrelations between the ref-
erence signal and antenna signals rxy is then calculated as:

rxy = ε{XyH}
= GΣsGHw+Σnw,

(4)

where Σs and Σn are the covariance matrices for the received
and noise signals respectively. The noise covariance matrix
is diagonal.

Next we calculate the expected value of the autocorrelations
rxx of the receive paths as:

rxx = vecdiag
(
ε{XXH}

)
= vecdidag

(
GΣsGH)+σn,

(5)

where vecdiag() converts the main diagonal of its argument
into a vector.

At this stage we have 2P equations with 2P unknowns,
namely g = vecdiag(G) and σn = vecdiag(Σn). Next we
express the problem as a matrix equation:[

rxy
rxx

]
=

[
diag

(
ΣsGHw

)
diag(w)

diag(vecdiag(ΣsG)) I

][
g

σn

]
, (6)

where I is the identity matrix. We can write the problem as:

r = Au, (7)

where u contains the unknown gains and noise powers, as
indicated above, and can be solved as:

u = A−1r. (8)

When solving, it is assumed that a calibration source is lo-
cated in the phase centre and that there are no interfering
signals present. As a result, all entries of Σs will be equal to
the power of the calibration source which removes the need
to model P2 unique entries.

3 Simulation model

A 24-by-24 element uniform rectangular array (URA) with
half-wavelength spacing is considered. A calibration source
is located in the main beam of the array while an inter-
fering source is located at a certain angle away from the
main beam. Since we want to determine the effectiveness
of nulling specifically, we are assuming a measurement sce-
nario with zero system noise power. Measurements are gen-
erated and then multiplied with the true gains which are
modelled as gp =CN(1,0.1), i.e., gains nominally equal to
unity with Gaussian noise on the real and imaginary com-
ponent with a standard deviation of 0.1.

Two simulation scenarios are investigated:

1. The boresight angle of the interferer is varied between
10 and 85 degrees while the power of the interferer
is constant and equal to the power of the calibration
source.

2. The boresight angle of the interferer matches the first
sidelobe of the array and its power is varied.

In both cases, a null is placed at the location of the inter-
ferer. The null is applied by multiplying the antenna signals
with the appropriate weights that are calculated as:

wnull = ac−ai
aH

i ac

aH
i ai

, (9)

where ac and ai are P× 1 vectors containing the geomet-
ric delay phasors of the antennas towards the calibration
and interfering source respectively. This changes (3) to
y = wH

nullX.

4 Results

Scenario 1: interferer with variable position

Figure 1 shows a comparison of the mean magnitude and
phase error of the gain estimates as a function of interferer
boresight angle with nulling enabled and disabled.

When nulling is disabled, it is seen that the mean error fol-
lows the sidelobe pattern of the array. This is expected
since, as explained earlier, the estimation error is directly
proportional to the level of interference. Without nulling,
the level of interference is mainly influenced by the side-
lobe pattern of the array, which is a combination of the array
factor and the average embedded element pattern (EEP).

With nulling enabled, it is seen that the mean error de-
creases as the interferer boresight angle increases. How-
ever, the level of error is similar to the level achieved in
the nulls of the sidelobe pattern. This is an intuitive result
as, at those locations, the inferfering source is nulled even
without nulling that direction specifically. The error curve
also indicates that the errors are non-zero. This is caused
by the fact that the total power detected on the autocorre-
lations of the element signals is still the sum of the power
of the two sources as detected by the individual elements in
the array. As our simulations are based on a finite-length
time series based on noise-like signals, this causes a self-
noise effect [10]. As the power picked up from the interfer-
ing source is directly proportional to the embedded element
patterns (EEPs) of the array, the mean error level gradually
decreases to zero as the boresight angle increases.

Scenario 2: interferer with variable power

Figure 2 shows a comparison of the mean magnitude and
phase error of the gain estimates as a function of Signal-
to-Interference Ratio (SIR). The SIR is calculated as SIR =
Pc/Pi, where Pc and Pi are the incident power, which is close
to the apparent power as the EEPs hardly attenuate the sig-
nal at the small boresight angle used.



When comparing the results, it is evident that the null is
highly effective in minimising the estimation error for the
full range of interferer powers being considered. When
nulling is disabled, we see a steady increase in estimation
error followed by a discontinuity. Analysis of the gain so-
lutions showed that this is the point where the calibration
procedure switches to the interferer because of its dominant
power.

When the power of the interferer is increased further, cali-
bration with nulling enabled also breaks down. A detailed
analysis in which we varied the length of the time series
used as well as the magnitude of the gain errors in the array
indicated that this is due to a combination of self-noise and
beam errors at the start of the calibration iterations. The
beam errors limit the suppression of the interferer while
the self-noise restricts the achievable calibration accuracy
in the first iteration of the calibration loop. As consecutive
iterations are based on exactly the same time series, i.e.,
no new measurement is simulated, the iterations lock-in to
an erroneous solution. Figure 3 shows a comparison of the
phase estimation error of all antennas per iteration for SIR
values of 0 dB and -20 dB. Notice the difference in conver-
gence in the first few iterations between the two scenarios.

5 Conclusion

This paper explored null placement as a way of improv-
ing the performance of calibration using self-holography.
Two dynamic simulation scenarios were used to summarise
the possible improvements. The results from the first sce-
nario showed that, while null placement is highly effec-
tive in reducing the error, there is still a dependence on
the embedded element patterns. This was expected since
it was previously determined that with interferers present,
the self-holography method produces a bias that is depen-
dent on both the array pattern and the embedded element
pattern. The results from the second scenario showed that
null placement remains highly effective even when the in-
terfering power increases significantly.

These analyses were done for a 24-by-24 element URA.
The performance of self-holography is strongly dependent
on array size, so it is expected that these results will im-
prove for larger arrays, such as the MFAA, which this work
is aimed at. Both scenarios considered only one interferer,
which is slightly unrealistic in a practical sense. The MFAA
will be built in a radio-quiet environment, so it is expected
that interference will be minimal. However, if momentar-
ily significant interference does arise, it is likely that it will
come from a single source. RFI monitoring stations should
be able to detect it and its location. Nulling can then be used
to minimise its impact. Nulling can also be used to suppress
the signals from other bright astronomical sources that may
have a detrimental effect on a calibration measurement on
a pre-selected astronomical calibration source.
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Figure 1. Error in magnitude (left) and phase (right) as a function of interferer boresight angle.
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Figure 2. Error in magnitude (left) and phase (right) as a function of SIR.
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Figure 3. Phase estimate error of all antennas per iteration for SIR values of 0 dB (left) and -20 dB (right).


