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Abstract

An electrically small dual-loaded loop is capable of si-
multaneously detecting orthogonal components of the elec-
tric and magnetic fields. When three orthogonal loops are
used, the sensor is capable of simultaneously detecting all
six electromagnetic components. The response of a dual-
loaded loop to an electric field is reformulated and new re-
sults are presented. Simulations are used to validate the
derived results and excellent agreement is achieved.

1 Background and Introduction

A loop antenna with two antipodal loads is a well known
Electromagnetic (EM) field sensor [1]. When the loop
is electrically small it can be used to simultaneously de-
tect one component of the electric and magnetic intensity
field vectors. By using three orthogonal loops, it is capa-
ble of measuring the complete EM vectors (comprising the
three electrical and the three magnetic field components).
The response of a dual-loaded loop to a linearly polarized
plane wave was formulated by Kanda in 1984 [2], who later
extended the analysis to the response of centrally located
electric and magnetic dipole moments [3]. At the time of
the formulations, it was computationally challenging to use
simulations, so validation measurements were performed
in Large Transverse Electromagnetic (TEM) cells, which
lead to significant measurement uncertainties. Some papers
that have characterized a dual-loaded loop antenna have
reported significant discrepancy between theory and mea-
surements (e.g. [2, 4]), so there is a need to carefully vali-
date the formulations.

This paper reformulates the response to an antipodal dual-
loaded loop to an electric field and new results are pre-
sented. Specific examples are given for a linearly polar-
ized plane wave and centrally located electric and magnetic
dipole moments. Simulations are used to validate the new
formulations and excellent agreement is achieved. Such nu-
merical experiments using magnetic and electric dipole mo-
ments would be very challenging to perform using a physi-
cal set-up. The new formulations correct previously derived
results and thereby allow for more accurate measurements
of an electromagnetic field when using a dual-loaded loop
sensor.

2 Theory

Kanda extended the analysis of a dual-loaded loop sensor
for the case of general incident field distributions [2]. In
the present work, we rederive Kanda’s results using differ-
ent reasoning and arrive at modified results. Throughout
this paper complex notation is used and the time harmonic
factor, e jωt , has been suppressed.

2.1 Single Loop Electric and Magnetic-field
Sensor

The boundary conditions on a perfectly conducting loop
with two antipodal loads are such that the tangential electric
field is zero everywhere except across the loads
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where b is the loop radius, δ (·) is the Dirac delta function,
η is the wave impedance in the medium and ZL is the an-
tipodal port impedances. The tangential component of the
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Ωn is the Lommel-Weber function, Jn is the Bessel func-
tion, γ = 0.5772 · · · is Euler’s constant, and I0 and K0 is
the modified Bessel function of the first and second kind,
respectively. Substituting (2), (3) and (4) into (1), and per-
forming the integration, yields the Fourier series
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from which the Fourier series coefficients for the loop cur-
rent are
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For electrically small loops, the current can be approxi-
mated from the first few Fourier series coefficients (i.e. n <
2). Using (3) and (10), the difference current between the
ports is

I∆ = I(0)− I(π) = 2(I1 + I−1) =
−2πbY1
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( f1 + f−1),

(11)
where Y1 = 2/ jηπa1 is the admittance of the n = 1 current
mode. (11) is different from Kanda [2] in that it doesn’t
assume that f1 = f−1 and that there is a sign change.

The sum of the port currents is

IΣ = I(0)+ I(π) = 2I0 =
−4πbY0
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where Y0 = 1/ jηπa0 is the admittance of the n = 0 current
mode. (12) is different from Kanda [2] by a sign change.

2.1.1 Response to a Linearly Polarized Plane Wave

As shown in Fig.1, the electric intensity for a linearly po-
larized incident plane wave is denoted

EEE(r) = EEE0e− jkkk·rrr = Exx̂xx+Eyŷyy+Ezẑzz (13)

where,
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+sinψ sinθ ẑzz) , (14)
kkk = k (sinθ cosφ0x̂xx+ sinθ sinφ0ŷyy− cosθ ẑzz) , (15)
rrr = xx̂xx+ yŷyy+ zẑzz, (16)
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Figure 1. Illustration of the linearly polarized plane wave
impinging onto a dual-loaded z−aligned loop. The loop has
a radius of b, conductor radius of a, and antipodal termina-
tion impedances of ZL.

where k is the wavenumber, E i
0 is a complex constant, and

x̂xx, ŷyy, and ẑzz are the Cartesian coordinate unit vectors. As
shown in Fig. 1a, φ and θ are the spherical coordinates,
and ψ is the orientation angle, i.e. the angle between the
electric intensity and the normal to the plane of incidence.

The magnetic intensity is
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The φ component of the electric intensity (14) along a
ẑzz−directed loop of radius b, located at the origin, is
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Using the Bessel function relations J′0(·) =−J1(·), J−1(·) =
−J1(·) and J′−1(·) = −J′1(·), and the small argument ap-
proximations J1(ε)≈−ε/2 and J′1(ε)≈ 1/2,
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Comparing (22) and (24) to the field expressions for the
electric and magnetic intensities (14) and (18), yields

IΣ = I(0)+ I(π) =
j2πkb2ηY0

1+2Y0ZL
Hz, (25)

I∆ = I(0)− I(π) =− 2πbY1

1+2Y1ZL
Ey. (26)

2.1.2 Response to electric and magnetic dipole mo-
ments at the origin

Electric and magnetic dipole moments located at the origin,
can be expressed, respectively

mmme = I `̀̀ = me,xx̂xx+me,yŷyy+me,zẑzz, (27)
mmmm = Iaaa = mm,xx̂xx+mm,yŷyy+mm,zẑzz, (28)

where me j and mm j are the components of the electric and
magnetic dipole moment along the jth coordinate, respec-
tively, I is the current amplitude, `̀̀ is the electric dipole’s
incremental length vector, and aaa is the magnetic dipole’s
incremental area vector in the direction normal to the loop
(following the “right-hand rule" convention). The tangen-
tial component of the electric field from these moments on
the loop is [3]
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Using these coefficients in (12) and (11) relates the sum and
difference currents to components of the moments,
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Note that (37) is half of the value presented in previous
work [3, 5], and both (36) and (37) differ from the previ-
ous work by a sign change.

3 Results

RF port
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Magnetic Dipole Moment
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(a) Simulation model with a ŷyy−directed magnetic dipole source at the centre. In
this model the magnetic dipole radius was b/500.

RF port

loop radius = b
loop conductor radius = a

Electric Dipole Moment

(b) Simulation model with a electric dipole source at the centre. In this model
the electric dipole length was b/83, the dipole width was b/7,500, and the
dipole feed gap of b/25,000.

Figure 2. Simulation models for a centrally located (a)
magnetic and (b) electric dipole moment sources. The loop
conductor radius was a = b/52, and the port gaps were 2a.

The formulations were verified by modelling a single dual-
loaded loop in CST Microwave Studio, with simulation



models shown in Fig. 2. Three cases were considered:
when the loop was excited with 1) a linearly polarized plane
wave, 2) a small loop (i.e. a magnetic moment), and 3) a
small dipole (i.e. an electric moment). The results for a
plane wave source are shown in Fig. 3a, and good agree-
ment with (25) and (26) is seen when kb < 0.2. The re-
sults for the magnetic and electric dipole moment sources
are shown in Fig. 3b and Fig. 3c, respectively. The re-
sults again confirm the derivations presented in this paper,
as good agreement is seen when kb < 1 and kb < 0.2 for
a magnetic and electric moment, respectively. Kanda and
Hill’s formulation for the response of a dual-loaded loop to
a centrally located magnetic dipole moment only differs to
(36) in a sign change, however an electric source is seen to
differ by a factor of 2.

4 Conclusion

The antipodal dual-loaded loop sensor plays a critical part
in three-loop antenna systems. The theoretical response
of a dual-loaded loop was revisited and new formulations
were presented. The modified formulations are validated
using simulation with an incident linearly polarized plane
wave, and centrally located magnetic and electric dipole
moments. The new expressions will result in more mean-
ingful measurements of electromagnetic fields, particularly
from electric moment sources, when using a dual-loaded
loop sensor.
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