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Abstract
Excitation of an electromagnetic field with the desired spa-
tial structure in a relatively large nerve fiber consisting of
tightly packaged axons by an array of filamentary electric-
dipole sources is studied. The procedure of finding the
dipole moments of the filamentary sources located around
the nerve fiber is proposed to ensure the required field pat-
tern inside the nerve. Numerical results demonstrating the
possibility of excitation of the desired field in the consid-
ered fiber are reported.

1 Introduction
In recent years, non-contact methods for stimulation of
nerve fibers by the electromagnetic radiation of the infrared
and optical frequency ranges have attracted enhanced inter-
est (see, e.g., [1, 2] and references therein). These methods
have no such drawbacks, which appear when stimulating
the nerve tissue by contact electrodes, as simultaneous ex-
citation of several closely located neurons by a single elec-
trode and an immune response of the organism to the direct
contact of electrodes with tissues.

In this work, we consider the features of excitation of an
electromagnetic field with the desired spatial distribution by
an array of filamentary sources. It is assumed that the elec-
tromagnetic radiation is excited by electric-dipole filaments
located at the same distance from the nerve-fiber axis. The
emphasis is placed on the possibility of formation of the
desired field distribution inside the nerve by appropriately
choosing the electric dipole moments of the filaments.

2 Formulation of the Problem and Basic
Equations

Consider a system of filamentary sources aligned with the
z-axis of a Cartesian coordinate system (x, y, z) and located
on a cylindrical surface of radius R [see Fig. 1(a)] in the
region |z| < d, where d is the half-length of the sources.
Let us introduce an individual cylindrical coordinate system
(ρl , φl , zl) for each source, where l is the source number.
The electric current density of the lth source in its cylindri-
cal coordinate system can be written in the form

j(Σ)l =
δ (ρl)

2πρl

S

∑
s=1

j(0)l,s exp(−ik0 pszl) [U(z+d)−U(z−d)] , (1)

where k0=ω/c is the free-space wave number (c is the
speed of light in free space and ω is the angular fre-

Figure 1. Geometry of the problem (a) and the structure of
an axon (b).

quency), ps denotes the normalized (to k0) propagation con-
stants of the current waves traveling along the filament, S
is the number of such current-wave terms in the filament,
δ is the Dirac function, U is the Heaviside function, and
j(0)l,s =iωPl,s(x0 cosθl+y0 sinθl). Here, Pl,s is the electric
dipole moment per unit length of the filament, which corre-
sponds to a current wave with the propagation constant ps,
and θl is the angle specifying the dipole moment direction.
Hereafter, we omit the time factor exp(iωt) and take into
account that zl = z. Such electric-dipole filaments can be
realized as arrays of nanoantennas operated in the infrared
or optical frequency ranges [3]. Note that the Gaussian sys-
tem of units is used in this work.

We assume that a nerve fiber, which is placed in the inner
region of the described system, consists of tightly packaged
identical myelinated axons that are parallel to the z axis. We
employ the model of infinitely long, longitudinally homo-
geneous axons, which is considered in [2]. The outer and
inner regions of each axon are filled predominantly with
water and have the dielectric permittivities ε1 and ε3, re-
spectively [see Fig. 1(b)]. Each axon has a myelin sheath
with the dielectric permittivity ε2 between cylindrical sur-
faces with the radii a1 and a2. Myelin is assumed to be a
continuous medium.

As is known, if a certain value of the electric field in the
regions of location of some axons in the nerve fiber is ex-
ceeded, then these axons turn out to be stimulated. This
fact stipulates the purpose of this work, which is aimed at
determining the dipole moments of sources that provide the
given field distribution inside the nerve.

The sources (1) can be represented as

j(Σ)l = (2π)−1k0

∫
∞

−∞

jl(ρl , p)exp(−ik0 pz)d p, (2)
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Figure 2. Observation point P with cylindrical coordinates
(ρα , φα ) and (ρβ , φβ ) in the coordinate systems related to
the αth and β th axons, respectively.

where

jl(ρl , p) =
δ (ρl)

πρl

S

∑
s=1

j(0)l,s
sin [k0(p− ps)d]

k0(p− ps)
. (3)

At first, we obtain the longitudinal components of the elec-
tric and magnetic fields excited by the current (2) in a
homogeneous medium with the dielectric permittivity ε1.
These components are written in the cylindrical coordinate
system related to the lth source as follows:

Ez,l =
k2

0
2π

∫
∞

−∞

p
q1

ε1
C(e)

l H(2)
1 (k0q1ρl)cos(φl−θl)e−ik0 pzd p,

Hz,l =
k2

0
2π

∫
∞

−∞

q1C(e)
l H(2)

1 (k0q1ρl)sin(φl−θl)e−ik0 pzd p. (4)

Here, C(e)
l =2π ∑

S
s=1 Pl,s sin [k0(p−ps)d]/(p−ps), q1 =(

ε1− p2
)1/2, and H(k)

m is the Hankel function of the kth kind
of order m (k = 1,2).

To find the total field in the system considered, we proceed
to the analysis of the scattering of the electromagnetic ra-
diation by a nerve fiber. For convenience of the subsequent
mathematical calculations, we introduce auxiliary coordi-
nate systems related to individual axons (see Fig. 2). The
radial and azimuthal coordinates of the observation point in
the coordinate systems of different axons, which have, for
example, the numbers α and β , will be denoted (ρα , φα )
and (ρβ , φβ ), respectively.

The total field in the coordinate system of the αth axon can
be expressed via the longitudinal components, which are
represented in terms of azimuthal harmonics as[

Ez;α(rα)
Hz;α(rα)

]
=

∞

∑
m=−∞

k0

2π

∫
∞

−∞

[
Ez;α,m(ρα ,p)
Hz;α,m(ρα ,p)

]
e−imφα−ik0 pzdp, (5)

where m is the azimuthal index (m = 0,±1,±2, . . . ). The
functions Ez;α,m(ρα , p) and Hz;α,m(ρα , p) satisfy the equa-
tions

L̂α,mEz;α,m=0, L̂α,mHz;α,m=0, (6)

where L̂α,m =
∂ 2

∂ρ2
α

+
1

ρα

∂

∂ρα

− m2

ρ2
α

+ k2
0q2

k , k = 1,2,3,

and q2
k = εk− p2 denotes the transverse wave number in the

kth region of the axon. The radial and azimuthal compo-
nents of the electric and magnetic fields can be expressed
via the longitudinal components (5).

Azimuthal harmonics of the electric and magnetic fields in-
side the αth axon are described by the expressions[

Ez;α,m
Hz;α,m

]
=

[
B(1)

α,m

B(2)
α,m

]
q3Jm(k0q3ρα), ρα ≤ a1,[

Ez;α,m
Hz;α,m

]
=

2

∑
k=1

[
C(k)

α,m

C̃(k)
α,m

]
q2H(k)

m (k0q2ρα), a1≤ρα≤a2, (7)

where B(1,2)
α,m , C(1,2)

α,m , and C̃(1,2)
α,m are the amplitude coefficients

corresponding to the mth azimuthal harmonic and Jm is the
Bessel function of the first kind of order m.

In the outer medium outside the axons, the total field (5)
is determined by several components, including the field
scattered by the αth axon, the field scattered by other ax-
ons with the numbers β 6= α , and the field of filamentary
sources. Azimuthal harmonics of the electric and magnetic
fields scattered by the αth axon are represented in its coor-
dinate system in the form[

E(sc)
z;α,m

H(sc)
z;α,m

]
=

[
D(1)

α,m

D(2)
α,m

]
q1H(2)

m (k0q1ρα), (8)

where D(1)
α,m and D(2)

α,m are the scattering coefficients corre-
sponding to the azimuthal index m. To find the scattering
coefficients, the total field in the outer medium should be
written in a coordinate system of the αth axon. To this end,
we use Graf’s addition theorem for cylindrical functions,
according to which the azimuthal harmonic of the field at
some observation point P (see Fig. 2), which is written in
the coordinate system of the β th axon, can be represented
in the coordinate system of the αth axon in the following
way (see in [2, 4]):

H(2)
n
(
k0q1ρβ

)
e−inφβ

=
∞

∑
m=−∞

Jm (k0q1ρα)H(2)
m−n

(
k0q1ρβα

)
ei(m−n)φβα−imφα . (9)

Here, ρβα is the distance between the axes of the axons
with the numbers α and β , and φβα is the azimuthal angle
of the axis of the β th axon in the coordinate system of the
αth axon. In (9), it is assumed that the condition ρα < ρβα

is fulfilled. In what follows, this condition is ensured by the
fact that this formula is used only to represent the incident
field at the outer boundary of the axon. As a result, az-
imuthal harmonics of the total electric and magnetic fields
outside the axons of a nerve fiber in the coordinate system
of the αth axon take the form

Ez;α,m = E(sc)
z;α,m +E(ex)

z;α,m, Hz;α,m = H(sc)
z;α,m +H(ex)

z;α,m, (10)
where

E(ex)
z;α,m=q1Eα,mJm(k0q1ρα), H(ex)

z;α,m=q1Hα,mJm(k0q1ρα).

Here,[
Eα,m
Hα,m

]
=

Na

∑
β 6=α

∞

∑
n=−∞

[
D(1)

β ,n

D(2)
β ,n

]
H(2)

m−n
(
k0q1ρβα

)
ei(m−n)φβα

+
Ns

∑
l=1

[
E(0)

l

H(0)
l

]{
H(2)

m−1(k0q1ρlα)ei(m−1)φlα+iθl

−
[

1
−1

]
H(2)

m+1(k0q1ρlα)ei(m+1)φlα−iθl

}
, (11)



where E(0)
l = k0 pC(e)

l /(2ε1), H(0)
l = ik0C(e)

l /2, Na is the
number of the axons in the nerve fiber, and Ns is the number
of the filamentary sources.

The coefficients B(1,2)
α,m , C(1,2)

α,m , C̃(1,2)
α,m , and D(1,2)

α,m are found
from boundary conditions for the tangential field compo-
nents on the inner and outer surfaces of the myelin sheath
of each axon. Using the technique based on the scattering
matrix method [4] and the boundary conditions on the sur-
faces ρα = a1 and ρα = a2 of the myelin sheath of the αth
axon, we can obtain a system of equations for the scattering
coefficients D(1)

α,m and D(2)
α,m in the form

D(1)
α,m = See

m Eα,m +Seh
m Hα,m,

D(2)
α,m = She

m Eα,m +Shh
m Hα,m, (12)

where See
m , Seh

m , She
m , and Shh

m are the elements of the scat-
tering matrix of a single cylindrical scatterer. To find
these elements, we consider the system of equations, which
is obtained from the boundary conditions on the surfaces
ρα = a1 and ρα = a2 of a single scatterer:

Ĵm 0 −Ĥ(1)
m,1 −Ĥ(2)

m,1 0 0 0 0

0 Ĵm 0 0 −Ĥ(1)
m,1 −Ĥ(2)

m,1 0 0

−J̃m
◦

Jm H̃(1)
m,1 H̃(2)

m,1 −
◦

H(1)
m,1 −

◦
H(2)

m,1 0 0

−ε3
◦

Jm−J̃m ε2
◦

H(1)
m,1 ε2

◦
H(2)

m,1 H̃(1)
m H̃(2)

m,1 0 0

0 0 −Ĥ(1)
m,2 −Ĥ(2)

m,2 0 0 Ĥ(2)
m 0

0 0 0 0 −Ĥ(1)
m,2 −Ĥ(2)

m,2 0 Ĥ(2)
m

0 0 H̃(1)
m,2 H̃(2)

m,2 −
◦

H(1)
m,2 −

◦
H(2)

m,2 −H̃(2)
m

◦
H(2)

m

0 0 ε2
◦

H(1)
m,2 ε2

◦
H(2)

m,2 H̃(1)
m,2 H̃(2)

m,2−ε1
◦

H(2)
m −H̃(2)

m



×



B
(1)
m

B
(2)
m

C
(1)
m

C
(2)
m

C̃
(1)
m

C̃
(2)
m

D
(1)
m

D
(2)
m


=



0
0
0
0

−q1Jm (Q1)
0

pm
Q1

Jm(Q1)

iε1J′m(Q1)


A

(1)
m +



0
0
0
0
0

−q1Jm (Q1)
−iJ′m(Q1)
pm
Q1

Jm(Q1)


A

(2)
m , (13)

where
Ĵm=q3Jm (Q3) , Ĥ(k)

m,γ=q2H(k)
m
(
Q̃γ

)
, Ĥ(2)

m =q1H(2)
m (Q1) ,

J̃m=
pm
Q3

Jm (Q3), H̃(k)
m,γ=

pm
Q̃γ

H(k)
m
(
Q̃γ

)
, H̃(2)

m =
pm
Q1

H(2)
m (Q1),

◦
Jm=iJ′m (Q3),

◦
H(k)

m,γ=iH(k)
m
′(
Q̃γ

)
,

◦
H(2)

m = iH(2)
m
′
(Q1),

Q1 = k0q1a2, Q̃γ = k0q2aγ , Q3 = k0q3a1, γ = 1,2. (14)
In (14), the prime indicates the derivative with respect to
the argument. Upon finding the field coefficients B

(1,2)
α,m ,

C
(1,2)
α,m , C̃

(1,2)
α,m , and D

(1,2)
α,m from system (13), the quantities

See
m , Seh

m , She
m , and Shh

m are represented as See
m = D

(1)
m and

She
m = D

(2)
m under the conditions A

(1)
m =1 and A

(2)
m =0, and

as Seh
m = D

(1)
m and Shh

m = D
(2)
m under the conditions A

(1)
m =0

and A
(2)

m =1.

Application of (12) for each axon and each azimuthal index
m = 0,±1, . . . ,±M yields a system of Na(4M + 2) inho-

mogeneous linear equations for the coefficients D(1)
α,m and

D(2)
α,m, where M is the absolute value of the number of the

highest azimuthal harmonic taken into account (the sum-
mation over n in (11) is now performed from −M to M).
The choice of a finite number of azimuthal harmonics is
determined by the required accuracy of numerical calcu-
lations. Upon solving the system of equations described
above, we find the scattering coefficients D(1)

α,m and D(2)
α,m.

Using these coefficients and the system of equations (13),
it is then easy to find the field coefficients in the body and
the myelin sheath of each axon by putting A

(1)
m = Eα,m and

A
(2)

m = Hα,m.

3 Determining the Dipole Moments of the
Filamentary Sources

The problem of finding the amplitudes of dipole moments
of the given sources is reduced to an optimization proce-
dure. Such a procedure requires considerable computa-
tional resources. Instead of optimization, we can use a sim-
pler and less resource-consuming method for determining
the amplitudes of the sources, which is as follows. Let the
desired distribution of the longitudinal electric-field com-
ponent be E(d)

z in the region ρ < R. Consider an auxiliary
magnetic field H(d)

z that has the same spatial distribution as
that of the desired electric field. We expand this magnetic
field in terms of the eigenwaves of a homogeneous medium
with the permittivity ε1 in the cross section z = 0 as

H(d)
z =

∫
∞

0
H(r)

z (ρ,φ ,q)dq, (15)

where

H(r)
z (ρ,φ ,q)=

Me

∑
m=−Me

am(q)qJm(k0qρ)e−imφ ,

am(q)=
k2

0
2π

∫ 2π

0
dφ

∫
∞

0
H(d)

z Jm(k0qρ̃)eimφ
ρ̃dρ̃. (16)

Here, Me is the absolute value of the number of the highest
azimuthal harmonic taken into account in this representa-
tion, and am is the expansion coefficient. Then we replace
(15) by the quadrature formula

H(d)
z =

Smax

∑
s=1

AsH
(r)
z (ρ,φ ,qs), (17)

where Smax is the maximum value taken by the index of
s, which is determined by the specified accuracy of nu-
merical calculations, and the quantity As is determined by
the used numerical integration method. Consider the field
Hz which has the distribution described by the function
AsH

(r)
z (ρ,φ ,qs) in the region ρ < R and is zero in the re-

gion ρ > R. The surface electric current exciting this field
is found from the boundary conditions on the surface ρ = R
as follows:

i(φ ,qs)=φφφ 0cAsH
(r)
z (R,φ ,qs)/(4π), (18)

Then we take the quantities ps in (1) equal to (ε1− q2
s )

1/2

and adopt that the quantity Pl,s for the lth source is speci-
fied with the help of (18) as

Pl,s = cAsH
(r)
z (R,φl0,qs)∆L/(4πω), (19)



Figure 3. The desired distribution of the longitudinal elec-
tric field (a) and its pattern specified in discrete form (b).
Normalized magnitude of the longitudinal electric field in
the plane z = 0 (c–f).

where φl0 is the azimuthal coordinate of the lth source in the
coordinate system (ρ,φ ,z), ∆L is the distance between the
nearest sources, and S = Smax. We take the angle θl , which
specifies the dipole moment direction of the lth source,
equal to φl0 for maximization of the excited electric field.
The total field, which is excited by the found sources, turns
out to be close in structure to the desired distributions of
both the magnetic and electric longitudinal components.

4 Numerical Results
Numerical calculations were performed for the nerve fiber
consisting of 92 tightly packaged axons. The inner and
outer radii of the myelin sheath were taken equal to
a1=1.5 µm and a2=2.5 µm, respectively. The array of fil-
amentary sources consisted of 497 elements located on a
cylindrical surface of radius R = 30a2. Each source oper-
ated at a frequency which corresponded to the wavelength
λ0=2010 nm and has the half-length d=2×104λ0. The dis-
tance ∆L between the nearest sources was equal to λ0/2.
We used the quadrature method based on Simpson’s rules
of numerical integration and took the values Me=295 and
qS=1.8 for calculation of dipole moments (19). The max-
imum absolute value of the azimuthal index used in the
calculations of the scattered fields was limited by M = 15.
The dielectric permittivities of water and myelin were cal-
culated as in [2] for λ0=2010 nm and the relatively small
dielectric permittivity of the myelin-based proteins: ε1 =
ε3 = 1.68− i0.0026 and ε2 = 1.97− i0.0008.

Figure 3(a) shows the desired distribution of the longitudi-
nal electric field, which represents the logo of University
of Nizhny Novgorod. This distribution is used to specify
the required field pattern in discrete form, as is shown in
Fig. 3(b). The desired field is specified as follows E(d)

z =

∑
644
i=1 δ (x− xi)δ (y− yi). The coordinates (xi,yi) are marked

by the asterisks in Fig. 3(b). Figure 3(c) shows the quantity
|Ez| when the field is excited by the found electric-dipole
filaments in a homogeneous medium with the dielectric per-
mittivity ε1. Figure 3(e) shows |Ez| in the presence of the
nerve fiber. Figures 3(d) and 3(f) present the enlarged cen-
tral parts of Figs. 3(c) and 3(e), respectively. The circum-
ferences near the centers of the figures show the inner and
outer boundaries of the axons. The circumferences around
the sources located at the distance 30a2 from the fiber axis
indicate the strong-field regions in which the magnitude of
the field cannot be shown using the scale adopted for the
figure. As is evident from the figure, it is indeed possible to
create the desired pattern of the field inside the nerve fiber
by appropriately choosing the dipole moments of the fila-
mentary sources.

5 Conclusion
In this paper, we have solved the problem of excitation of
an electromagnetic field with the specified spatial distribu-
tion by a set of electric-dipole filaments in the presence of
a nerve fiber. It has been demonstrated that the field of
such sources with their dipole moments chosen appropri-
ately can have a spatial structure that provides a selective
impact on specified regions of the nerve fiber. The results
obtained can be useful in developing methods and tools for
high-precision non-contact stimulation of nerve fibers and
selective action on the compound of different (e.g., normal
and cancer) tissues.
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