Excitation of a Layered Sphere by Multiple Point-generated Primary Fields

Andreas Kalogeropoulos ${ }^{(1)}$, Nikolaos L. Tsitsas ${ }^{*(1)}$
(1) Aristotle University of Thessaloniki, School of Informatics, Thessaloniki, Greece

Abstract

Excitation of a layered spherical medium by N external point sources is considered. The exact solution of the direct scattering problem is derived by adopting an efficient superposition scheme. Low-frequency approximations and relevant numerical results are presented. Extensions to inverse problems are pointed out.

1 Introduction

In this paper, we consider the boundary-value problem concerning the excitation of a layered spherical medium by N point sources, arbitrarily located at the scatterer's exterior. Scattering problems due to excitation by multiple sources have various applications, including the excitation of the human brain by the neurons currents [1], microphone array methods used in aeroacoustics and speech recognition [2], [3], cancer-treatment techniques [4] as well as sonar imaging used in oceanography [5].

The exact solution of the direct problem is determined by introducing an overall superposition method, which is a generalization of the T-Matrix method [6]-[8]. We make essential use of the distinction between individual fields (fields generated by a single point source) and overall fields (fields generated by a group of sources); this is particularly important for problems involving more than one sources exciting a scatterer [9]. Then, we define certain excitation operators and expand the overall primary and secondary fields in forms similar to that of an individual field. In this way, we reduce the problem of calculating the coefficients of the overall and individual secondary fields into a standard TMatrix approach, as in the case of a single point source exciting the scatterer; the single source approach is presented e.g. in [6]. The proposed method has the advantage that it derives the coefficients of the overall secondary field as a sum of the coefficients of the individual secondary fields and requires only one application of the standard algorithm. Besides, from the expression of the overall coefficients, we can swiftly extract the coefficients of the individual secondary fields with no additional calculations.

Low-frequency approximations of the derived exact results are also obtained and related asymptotic expansions of the far-field patterns and scattering cross sections are presented. Such expansions can be efficiently utilized in inverse problems.

2 Mathematical Formulation

We consider a spherical scatterer of radius a_{1}, divided into P nested, concentric spherical shells $V_{p}(p=1, \ldots, P)$, by $P-1$ spherical surfaces each of radius a_{p}, with $p=2, \ldots, P$; see Fig. 1. Each layer V_{p}, defined by $a_{p+1}<r<a_{p}$, is characterized by wavenumbers k_{p} and mass densities ρ_{p}, with $p=1, \ldots, P-1$. The exterior V_{0} of the scatterer is characterized by wavenumber k_{0} and mass density ρ_{0}.

Figure 1. Layered spherical medium excited by N arbitrarily located external point sources

The layered scatterer is excited by N point sources located at \mathbf{r}_{j} of V_{0} for $j=1, \ldots, N$. These point sources emit spherical waves, with individual primary fields given by

$$
\begin{equation*}
u^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=A_{j} \frac{\exp \left(\mathrm{i} k_{0}\left|\mathbf{r}-\mathbf{r}_{j}\right|\right)}{\left|\mathbf{r}-\mathbf{r}_{j}\right|}, \mathbf{r} \neq \mathbf{r}_{j} \tag{1}
\end{equation*}
$$

Each individual primary field interacts with the scatterer, generating individual secondary fields in V_{0}, which are denoted by $u^{\text {sec }}\left(\mathbf{r} ; \mathbf{r}_{j}\right)$. The individual total field in V_{0} due to a
source at \mathbf{r}_{j} is denoted by $u^{0}\left(\mathbf{r} ; \mathbf{r}_{j}\right)$. According to Sommerfeld's method [10] (scattering superposition method [11]), it holds

$$
\begin{equation*}
u^{0}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=u^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{j}\right)+u^{\sec }\left(\mathbf{r} ; \mathbf{r}_{j}\right) \tag{2}
\end{equation*}
$$

Additionally, all individual total fields in V_{0} satisfy the Sommerfeld's radiation condition.

The superposition of all individual primary fields will be called the overall primary field and denoted by $u^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$. The superposition of all individual total fields in V_{p} will be called the overall field of layer V_{p} and denoted by $u^{p}\left(\mathbf{r} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)$.

On the boundaries of each layer V_{p}, all total individual and overall fields satisfy for $p=1, \ldots, P-1$

$$
\begin{align*}
u^{p-1}(\mathbf{r} ; \cdot) & =u^{p}(\mathbf{r} ; \cdot), \quad r=a_{p} \tag{3}\\
\frac{1}{\rho_{p-1}} \frac{\partial u^{p-1}(\mathbf{r} ; \cdot)}{\partial r} & =\frac{1}{\rho_{p}} \frac{\partial u^{p}(\mathbf{r} ; \cdot)}{\partial r}, \quad r=a_{p} . \tag{4}
\end{align*}
$$

As it is evident, the overall field of V_{0} also satisfies the Sommerfeld's radiation condition. The medium's core V_{P} can be soft, hard or penetrable. For a soft or hard core, the respective boundary conditions read

$$
\begin{array}{cc}
u^{P-1}(\mathbf{r} ; \cdot)=0, & r=a_{P} \\
\frac{\partial u^{P-1}(\mathbf{r} ; \cdot)}{\partial r}=0, & r=a_{P}, \tag{6}
\end{array}
$$

whereas for a penetrable core, conditions (3)-(4) hold for V_{P} as well.

The individual far-field due to a source located at \mathbf{r}_{j} is denoted by $g_{j}(\hat{\mathbf{r}})$ and is defined by

$$
\begin{equation*}
u^{\mathrm{sec}}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=g_{j}(\hat{\mathbf{r}}) h_{0}\left(k_{0} r\right)+O\left(r^{2}\right), \quad r \rightarrow \infty, \tag{7}
\end{equation*}
$$

where h_{0} is the 0 -order spherical Hankel function of the first kind. The superposition of all individual far-fields will be called overall far-field and denoted by $g(\hat{\mathbf{r}})$. Hence, it holds

$$
\begin{equation*}
u^{\mathrm{sec}}\left(\mathbf{r} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=g(\hat{\mathbf{r}}) h_{0}\left(k_{0} r\right)+O\left(r^{2}\right), \quad r \rightarrow \infty \tag{8}
\end{equation*}
$$

Individual and overall scattering cross sections will be denoted, respectively, by σ_{j} and σ. They are defined by means of their corresponding far-fields as follows

$$
\begin{align*}
\sigma_{j} & =\frac{1}{k_{0}^{2}} \int_{S^{2}}\left|g_{j}(\hat{\mathbf{r}})\right|^{2} \mathrm{~d} s(\hat{\mathbf{r}}), \tag{9}\\
\sigma & =\frac{1}{k_{0}^{2}} \int_{S^{2}}|g(\hat{\mathbf{r}})|^{2} \mathrm{~d} s(\hat{\mathbf{r}}) . \tag{10}
\end{align*}
$$

3 Excitation Operators and Field Expansions

Choosing the coordinate system (r, θ, ϕ) so that the origin is located at the sphere's center O, each point source is located at $\mathbf{r}_{j}=\left(r_{j}, \theta_{j}, \phi_{j}\right)$ with $r_{j}>a_{1}$, for $j=1, \ldots, N$. The
individual primary fields are given by [8]
$u_{0}^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=4 \pi \mathrm{i} k_{0} A_{j}\left\{\begin{array}{l}\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) Y_{n}^{m}(\hat{\mathbf{r}}) \\ h_{n}\left(k_{0} r\right) j_{n}\left(k_{0} r_{j}\right), r>r_{j} \\ \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{m}\left(\hat{\mathbf{r}}_{j}\right) Y_{n}^{-m}(\hat{\mathbf{r}}) \\ j_{n}\left(k_{0} r\right) h_{n}\left(k_{0} r_{j}\right), r<r_{j},\end{array}\right.$
while the individual secondary fields in V_{p} are expanded as

$$
\begin{array}{r}
u^{p}\left(\mathbf{r} ; \mathbf{r}_{j}\right)=4 \pi \mathrm{i} k_{0} A_{j} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) Y_{n}^{m}(\hat{\mathbf{r}}) \\
h_{n}\left(k_{0} r_{j}\right)\left(a_{j, n}^{p} j_{n}\left(k_{p} r\right)+b_{j, n}^{p} h_{n}\left(k_{p} r\right)\right) \tag{12}
\end{array}
$$

where j_{n} and h_{n} are the n-th order spherical Bessel and Hankel functions, respectively. Functions Y_{n}^{m} and Y_{n}^{-m} denote the spherical harmonic functions.

Now, we define the following excitation operators

$$
\begin{align*}
& \mathscr{J}_{n, m}(\mathbf{x})=\sum_{j=1}^{N} A_{j} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) j_{n}\left(k_{0} r_{j}\right) \mathrm{x}_{j} \tag{13}\\
& \mathscr{H}_{n, m}^{1}(\mathbf{x})=\sum_{j=1}^{N} A_{j} Y_{n}^{m}\left(\hat{\mathbf{r}}_{j}\right) h_{n}\left(k_{0} r_{j}\right) \mathrm{x}_{j} \tag{14}\\
& \mathscr{H}_{n, m}^{2}(\mathbf{x})=\sum_{j=1}^{N} A_{j} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) h_{n}\left(k_{0} r_{j}\right) \mathrm{x}_{j}, \tag{15}
\end{align*}
$$

where $\mathbf{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}\right)$ is an arbitrary vector or \mathbb{R}^{N}. We denote $\mathscr{A}_{n, m}^{p}=\mathscr{H}_{n, m}^{2}\left(\mathbf{a}_{n}^{p}\right)$ and $\mathscr{B}_{n, m}^{p}=\mathscr{H}_{n, m}^{2}\left(\mathbf{b}_{n}^{p}\right)$, where $\mathbf{a}_{n}^{p}=\left(a_{1, n}^{p}, \ldots, a_{N, n}^{p}\right)$ and $\mathbf{b}_{n}^{p}=\left(b_{1, n}^{p}, \ldots, b_{N, n}^{p}\right)$ are the vectors with components the unknown coefficients of the individual secondary fields, take under consideration expansions (11), (12), and utilize the definitions of overall primary and secondary fields. In this way, we obtain the following expansions for the overall primary field

$$
u^{\mathrm{pr}}\left(\mathbf{r} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=4 \pi \mathrm{i} k_{0}\left\{\begin{array}{l}
\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{m}(\hat{\mathbf{r}}) \tag{16}\\
h_{n}\left(k_{0} r\right) \mathscr{J}_{n, m}(\mathbf{q}), \quad r>\max \left[r_{j}\right] \\
\vdots \\
\sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{-m}(\hat{\mathbf{r}}) \\
j_{n}\left(k_{0} r\right) \mathscr{H}_{n, m}^{1}(\mathbf{q}), \quad r<\min \left[r_{j}\right],
\end{array}\right.
$$

where \mathbf{q} denotes the N-dimensional vector $(1,1, \ldots, 1)$. Similarly, the overall secondary field of V_{p} has the expansion

$$
\begin{array}{r}
u^{p}\left(\mathbf{r} ; \mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=4 \pi \mathrm{i} k_{0} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m} Y_{n}^{m}(\hat{\mathbf{r}}) \\
\left(\mathscr{A}_{n, m}^{p} j_{n}\left(k_{p} r\right)+\mathscr{B}_{n, m}^{p} h_{n}\left(k_{p} r\right)\right) . \tag{17}
\end{array}
$$

4 Exact Solution of the Direct Problem

Considering properties of the harmonic functions [12], and imposing boundary conditions, on the boundaries of layers
V_{p} for $p=2, \ldots, P-1$, we obtain

$$
\left[\begin{array}{c}
\mathscr{A}_{n, m}^{p} \tag{18}\\
\mathscr{B}_{n, m}^{p}
\end{array}\right]=\mathbf{T}_{n}^{(1 \rightarrow p)}\left[\begin{array}{c}
\mathscr{A}_{n, m}^{1} \\
\mathscr{B}_{n, m}^{1}
\end{array}\right]
$$

where \mathbf{T}_{n}^{p} is the transition matrix from layer V_{p-1} to layer V_{p} (see [6]), and $\mathbf{T}_{n}^{(1 \rightarrow p)}$ is the transition matrix from layer V_{1} to layer V_{p} given by $\mathbf{T}_{n}^{(1 \rightarrow p)}=\mathbf{T}_{n}^{p} \mathbf{T}_{n}^{p-1} \ldots \mathbf{T}_{n}^{2}$. Particularly, for the boundary of layer V_{1} we have

$$
\left[\begin{array}{c}
\mathscr{A}_{n, m}^{1} \tag{19}\\
\mathscr{B}_{n, m}^{1}
\end{array}\right]=\mathbf{T}_{n}^{1}\left[\begin{array}{c}
\mathscr{H}_{n, m}^{1}(\mathbf{q}) \\
\mathscr{B}_{n, m}^{0}
\end{array}\right] .
$$

Combining (18) and (19), we obtain

$$
\left[\begin{array}{c}
\mathscr{A}_{n, m}^{P-1} \tag{20}\\
\mathscr{B}_{n, m}^{P-1}
\end{array}\right]=\mathbf{T}_{n}^{(0 \rightarrow P-1)}\left[\begin{array}{c}
\mathscr{H}_{n, m}^{1}(\mathbf{q}) \\
\mathscr{B}_{n, m}^{0}
\end{array}\right] .
$$

Depending on the conditions on the core's boundary, we can extract the unknown coefficients of the overall secondary field. For a soft or hard core, we obtain

$$
\begin{equation*}
\mathscr{B}_{n, m}^{0}=-\frac{\Psi_{n}^{1}\left(k_{P-1} a_{P}\right) \mathscr{H}_{n, m}^{1}(\mathbf{q})}{\Psi_{n}^{2}\left(k_{P-1} a_{P}\right)} \tag{21}
\end{equation*}
$$

where $\Psi_{n}^{i}(x)$ with $i=1,2$ denotes the i component of the boundary transition vector

$$
\begin{equation*}
\boldsymbol{\Psi}_{n}(x)=\left[f_{n}(x) g_{n}(x)\right] \mathbf{T}_{n}^{(0 \rightarrow P-1)} \tag{22}
\end{equation*}
$$

The exact form of f_{n}, g_{n} depends on the boundary conditions, e.g.

$$
\begin{align*}
& f_{n}(x)= \begin{cases}j_{n}(x), & \text { soft core } \\
j_{n}^{\prime}(x), & \text { hard core }\end{cases} \tag{23}\\
& g_{n}(x)= \begin{cases}h_{n}(x), & \text { soft core } \\
h_{n}^{\prime}(x), & \text { hard core }\end{cases} \tag{24}
\end{align*}
$$

On the other hand, for a penetrable core, we have

$$
\begin{equation*}
\mathscr{B}_{n, m}^{0}=-\frac{T_{21, n}^{(0 \rightarrow P)} \mathscr{H}_{n, m}^{1}(\mathbf{q})}{T_{22, n}^{(0 \rightarrow P)}} \tag{25}
\end{equation*}
$$

where $T_{i j, n}^{(0 \rightarrow P)}$ denotes the $i j$ element of transition matrix $\mathbf{T}_{n}^{(0 \rightarrow P)}$. The coefficients of the individual secondary fields can be obtained directly from (21), (25) as follows

$$
\begin{array}{r}
b_{j, n}^{0}=-\frac{\Psi_{n}^{1}\left(k_{P-1} a_{P}\right) \mathscr{H}_{n, m}^{1}\left(\mathbf{h}_{j}\right)}{\Psi_{n}^{2}\left(k_{P-1} a_{P}\right)} \\
b_{j, n}^{0}=-\frac{T_{21, n}^{(0 \rightarrow P)} \mathscr{H}_{n, m}^{1}\left(\mathbf{h}_{j}\right)}{T_{22, n}^{(0 \rightarrow P)}} \tag{27}
\end{array}
$$

where

$$
\begin{equation*}
\mathbf{h}_{j}=\frac{\mathbf{e}_{j}}{A_{j} Y_{n}^{-m}\left(\hat{\mathbf{r}}_{j}\right) h_{n}\left(k_{0} r_{j}\right)}, \tag{28}
\end{equation*}
$$

with \mathbf{e}_{j} the vectors of the standard basis of \mathbb{R}^{N}. The overall far-field $g(\hat{\mathbf{r}})$ and the overall scattering cross section σ take the forms, respectively

$$
\begin{align*}
& g(\hat{\mathbf{r}})=4 \pi \mathrm{i} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(-1)^{m}(-\mathrm{i})^{n} Y_{n}^{m}(\hat{\mathbf{r}}) \mathscr{B}_{n, m}^{0} \tag{29}\\
& \sigma=\frac{4 \pi}{k_{0}^{2}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}(2 n+1) \frac{(n-m)!}{(n+m)!}\left|\mathscr{B}_{n, m}^{0}\right|^{2} \tag{30}
\end{align*}
$$

Eq. (26) coincides with (11) of [8]. For $\theta_{j}=0$, Eq. (27) reduces to (3.10) of [6].

5 Low Frequency Approximations

Next, we provide approximations for the overall far-field and the overall scattering cross section, in the case where a 2-layered sphere with a soft core is excited by N point sources. Denoting $\tau_{j}=a_{1} / r_{j}, \rho=\rho_{1} / \rho_{0}, \eta=k_{1} / k_{0}, \xi=$ a_{1} / a_{2} and assuming that $A_{j}=r_{j} e^{-i k_{0} r_{j}}$, by means of (29), we obtain the expansion of the overall far-field

$$
\begin{align*}
& g(\hat{\mathbf{r}})=\sum_{j=1}^{N} e^{-\kappa / \tau_{j}}\left\{\kappa S_{1}+\right. \\
& \kappa^{2}\left[\rho \eta^{2}\left(S_{1}\right)^{2}+S_{2} \tau_{j}\left(\cos \theta \cos \theta_{j}+\right.\right. \\
& \left.\left.\left.\sin \theta \sin \theta_{j} \cos \left(\phi_{j}-\phi\right)\right)\right)\right]+ \\
& \kappa^{3}\left[S_{3}-S_{2}\left(\cos \theta \cos \theta_{j}+\sin \theta \sin \theta_{j} \cos \left(\phi_{j}-\phi\right)\right)\right)+ \\
& \left(\sin 2 \theta \sin 2 \theta_{j} \cos \left(\phi_{j}-\phi\right)+\sin ^{2} \theta \sin ^{2} \theta_{j} \cos \left(2\left(\phi_{j}-\phi\right)\right)+\right. \\
& \left.\left.\left.\left.\frac{1}{3}\left(3 \cos ^{2} \theta_{j}-1\right)\left(3 \cos ^{2} \theta-1\right)\right)\right) \frac{\tau_{j}^{2}}{4} S_{4}\right]\right\}+O\left(\kappa^{4}\right) . \tag{31}
\end{align*}
$$

For the overall scattering cross section, utilizing (30), we arrive at

$$
\begin{align*}
& \sigma=4 \pi a_{1}^{2}\left\{\left(S_{1}\right)^{2}\left|\sum_{j=1}^{N} e^{-\kappa / \tau_{j}}\right|^{2}\right. \\
& {\left[1-\left(k_{0} a_{1}\right)^{2}\left(S_{1}\right)^{2} \frac{\rho \eta^{2}}{\xi}(\rho \xi+2-2 \rho)\right]+} \\
& \left.\left(k_{0} a_{1}\right)^{2} \frac{\left(S_{2}\right)^{2}}{3}\left|\sum_{j=1}^{N} \tau_{j} e^{-\kappa / \tau_{j}}\right|^{2}\right\}+O\left(\kappa^{4}\right) \tag{32}
\end{align*}
$$

where

$$
\begin{align*}
S_{1} & =\frac{1}{\rho-1-\xi \rho} \tag{33}\\
S_{2} & =\frac{\xi^{3}(1-\rho)+2+\rho}{\xi^{3}(1+2 \rho)+2-2 \rho} \tag{34}\\
S_{3} & =\frac{\rho \eta^{2}(2 \xi \rho+\rho-1)}{3 \xi}\left(S_{1}\right)^{3} \tag{35}\\
S_{4} & =-\frac{2 \xi^{5}(1-\rho)+3+2 \rho}{2 \xi^{5}(2+3 \rho)+3-3 \rho} \tag{36}
\end{align*}
$$

Eqs. (31) and (32) can be efficiently utilized in the development of inverse source and inverse medium algorithms.

6 Numerical Results

We show numerical results for the comparisons between the exact overall cross section and its corresponding lowfrequency approximation for the case of a 2-layered sphere with a soft core. The sphere is excited by two point sources located at $r_{1}=1.3 a_{1}$ and $r_{2}=1.7 a_{1}$. In the first case, we suppose that the layer V_{1} has physical parameters $\eta=1.75$ and $\rho=1.5$, whereas in the second case $\eta=2.25$ and $\rho=2.5$. For the computation of the exact overall cross section, we utilized formula (30).

Figure 2. Comparison between the exact cross section and its low frequency approximation for a 2-layered sphere with a soft core excited by $N=2$ external point sources for physical parameters $\eta=1.75$ and $\rho=1.5$.

Figure 3. As in Fig. 2, but for physical parameters, $\eta=$ 2.25 and $\rho=2.5$.

References

[1] G. Dassios, A. S. Fokas and F. Kariotou, "On the nonUniqueness of the Inverse Magnetoencephalography Problem," Inverse Problems, 21, 2005, pp. L1-L5, doi: 10.1088/0266-5611/21/2/L01.
[2] T. F. Brooks and W. M. Humphreys Jr., "A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays," Journal of Sound and Vibration, 294, 2006, pp. 856-879, doi: 10.1016/j.jsv.2005.12.046.
[3] G. Herold and E. Sarradj "Performance Analysis of Microphone Array Methods," Journal of Sound and Vibration, 401, 2017, pp. 152-168, doi: 10.1016/j.jsv.2017.04.030.
[4] S. Mukherjee, S. Curto, N. Albin, B. Natarajan, and P. Prakash, "Multiple-antenna Microwave Ablation: Analysis of non-Parallel Antenna Implants," Energybased Treatment of Tissue and Assessment VIII, Ed. Thomas P. Ryan, Proceedings of SPIE, vol. 9326, 2015, doi: 10.1117/12.2080349.
[5] A. Xenaki and Y. Pailhas, "Compressive Synthetic Aperture Sonar Imaging with Distributed Optimization," Journal of Acoustical Society of America, 146, 2019, pp. 1839-1850, doi: 10.1121/1.5126862.
[6] N. L. Tsitsas and C. Athanasiadis, "Point Source Excitation of a Layered Sphere: Direct and Far Field Inverse Scattering Problems," Quarterly Journal of Mechanics and Applied Mathematics, 61, 2008, pp. 549580, doi: 10.1093/qjmam/hbn017.
[7] C. A. Valagiannopoulos and N. L. Tsitsas, "Linearization of the T-matrix solution for quasihomogeneous scatterers," Journal of Optical Society of America A, 26, 2009, pp. 870-881, doi: 10.1364/josaa.26.000870.
[8] P. Prokopiou and N.L. Tsitsas "Direct and Inverse Low-frequency Acoustic Excitation of a Layered Sphere by an Arbitrarily Positioned Point Source," Mathematical Methods in the Applied Sciences, 41, 2018, pp. 1040-1046, doi:10.1002/mma. 4088.
[9] A. Kalogeropoulos and N. L. Tsitsas "Acoustic Excitation of a Layered Scatterer by N Internal Point Sources," 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation, 2019, pp. 424-425, doi:10.34726/waves2019.
[10] A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New York, 1949.
[11] C. -T. Tai, Dyadic Green Functions in Electromagnetic Theory, IEEE Press, Piscataway, New Jersey, 1994.
[12] M. Abramovitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.

