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Abstract

Excitation of a layered spherical medium by N external
point sources is considered. The exact solution of the di-
rect scattering problem is derived by adopting an efficient
superposition scheme. Low-frequency approximations and
relevant numerical results are presented. Extensions to in-
verse problems are pointed out.

1 Introduction

In this paper, we consider the boundary-value problem con-
cerning the excitation of a layered spherical medium by N
point sources, arbitrarily located at the scatterer’s exterior.
Scattering problems due to excitation by multiple sources
have various applications, including the excitation of the
human brain by the neurons currents [1], microphone array
methods used in aeroacoustics and speech recognition [2],
[3], cancer-treatment techniques [4] as well as sonar imag-
ing used in oceanography [5].

The exact solution of the direct problem is determined by
introducing an overall superposition method, which is a
generalization of the T-Matrix method [6]-[8]. We make
essential use of the distinction between individual fields
(fields generated by a single point source) and overall fields
(fields generated by a group of sources); this is particularly
important for problems involving more than one sources ex-
citing a scatterer [9]. Then, we define certain excitation op-
erators and expand the overall primary and secondary fields
in forms similar to that of an individual field. In this way,
we reduce the problem of calculating the coefficients of the
overall and individual secondary fields into a standard T-
Matrix approach, as in the case of a single point source ex-
citing the scatterer; the single source approach is presented
e.g. in [6]. The proposed method has the advantage that
it derives the coefficients of the overall secondary field as
a sum of the coefficients of the individual secondary fields
and requires only one application of the standard algorithm.
Besides, from the expression of the overall coefficients, we
can swiftly extract the coefficients of the individual sec-
ondary fields with no additional calculations.

Low-frequency approximations of the derived exact results
are also obtained and related asymptotic expansions of the
far-field patterns and scattering cross sections are presented.
Such expansions can be efficiently utilized in inverse prob-
lems.

2 Mathematical Formulation

We consider a spherical scatterer of radius a1, divided into
P nested, concentric spherical shells Vp (p = 1, . . . ,P), by
P−1 spherical surfaces each of radius ap, with p= 2, . . . ,P;
see Fig. 1. Each layer Vp, defined by ap+1 < r < ap, is
characterized by wavenumbers kp and mass densities ρp,
with p = 1, . . . ,P− 1. The exterior V0 of the scatterer is
characterized by wavenumber k0 and mass density ρ0.

Figure 1. Layered spherical medium excited by N arbitrar-
ily located external point sources

The layered scatterer is excited by N point sources located
at r j of V0 for j = 1, . . . ,N. These point sources emit spher-
ical waves, with individual primary fields given by

upr(r;r j) = A j
exp(ik0|r− r j|)
|r− r j|

, r 6= r j. (1)

Each individual primary field interacts with the scatterer,
generating individual secondary fields in V0, which are de-
noted by usec(r;r j). The individual total field in V0 due to a



source at r j is denoted by u0(r;r j). According to Sommer-
feld’s method [10] (scattering superposition method [11]),
it holds

u0(r;r j) = upr(r;r j)+usec(r;r j). (2)

Additionally, all individual total fields in V0 satisfy the
Sommerfeld’s radiation condition.

The superposition of all individual primary fields will
be called the overall primary field and denoted by
upr(r;r1, . . . ,rN). The superposition of all individual total
fields in Vp will be called the overall field of layer Vp and
denoted by up(r;r1, . . . ,rN).

On the boundaries of each layer Vp, all total individual and
overall fields satisfy for p = 1, . . . ,P−1

up−1(r; ·) = up(r; ·), r = ap (3)

1
ρp−1

∂up−1(r; ·)
∂ r

=
1

ρp

∂up(r; ·)
∂ r

, r = ap. (4)

As it is evident, the overall field of V0 also satisfies the Som-
merfeld’s radiation condition. The medium’s core VP can be
soft, hard or penetrable. For a soft or hard core, the respec-
tive boundary conditions read

uP−1(r; ·) = 0, r = aP (5)

∂uP−1(r; ·)
∂ r

= 0, r = aP, (6)

whereas for a penetrable core, conditions (3)-(4) hold for
VP as well.

The individual far-field due to a source located at r j is de-
noted by g j(r̂) and is defined by

usec(r;r j) = g j(r̂)h0(k0r)+O(r2), r→ ∞, (7)

where h0 is the 0-order spherical Hankel function of the first
kind. The superposition of all individual far-fields will be
called overall far-field and denoted by g(r̂). Hence, it holds

usec(r;r1, . . . ,rN) = g(r̂)h0(k0r)+O(r2), r→ ∞. (8)

Individual and overall scattering cross sections will be de-
noted, respectively, by σ j and σ . They are defined by
means of their corresponding far-fields as follows

σ j =
1
k2

0

∫
S2
|g j(r̂)|2ds(r̂), (9)

σ =
1
k2

0

∫
S2
|g(r̂)|2ds(r̂). (10)

3 Excitation Operators and Field Expan-
sions

Choosing the coordinate system (r,θ ,φ) so that the origin
is located at the sphere’s center O, each point source is lo-
cated at r j = (r j,θ j,φ j) with r j > a1, for j = 1, . . . ,N. The

individual primary fields are given by [8]

upr
0 (r;r j) = 4πik0A j


∑

∞
n=0 ∑

n
m=−n(−1)mY−m

n (r̂ j)Y m
n (r̂)

hn(k0r) jn(k0r j), r > r j

∑
∞
n=0 ∑

n
m=−n(−1)mY m

n (r̂ j)Y−m
n (r̂)

jn(k0r)hn(k0r j), r < r j,
(11)

while the individual secondary fields in Vp are expanded as

up(r;r j) = 4πik0A j

∞

∑
n=0

n

∑
m=−n

(−1)mY−m
n (r̂ j)Y m

n (r̂)

hn(k0r j)(a
p
j,n jn(kpr)+bp

j,nhn(kpr)), (12)

where jn and hn are the n-th order spherical Bessel and Han-
kel functions, respectively. Functions Y m

n and Y−m
n denote

the spherical harmonic functions.

Now, we define the following excitation operators

Jn,m(x) =
N

∑
j=1

A jY−m
n (r̂ j) jn(k0r j)x j, (13)

H 1
n,m(x) =

N

∑
j=1

A jY m
n (r̂ j)hn(k0r j)x j, (14)

H 2
n,m(x) =

N

∑
j=1

A jY−m
n (r̂ j)hn(k0r j)x j, (15)

where x = (x1, . . . ,xN) is an arbitrary vector or RN . We
denote A p

n,m = H 2
n,m(a

p
n) and Bp

n,m = H 2
n,m(b

p
n), where

ap
n = (ap

1,n, . . . ,a
p
N,n) and bp

n = (bp
1,n, . . . ,b

p
N,n) are the vec-

tors with components the unknown coefficients of the in-
dividual secondary fields, take under consideration expan-
sions (11), (12), and utilize the definitions of overall pri-
mary and secondary fields. In this way, we obtain the fol-
lowing expansions for the overall primary field

upr(r;r1, . . . ,rN)= 4πik0



∑
∞
n=0 ∑

n
m=−n(−1)mY m

n (r̂)
hn(k0r)Jn,m(q), r > max[r j]

...

∑
∞
n=0 ∑

n
m=−n(−1)mY−m

n (r̂)
jn(k0r)H 1

n,m(q), r < min[r j],
(16)

where q denotes the N-dimensional vector (1,1, . . . ,1).
Similarly, the overall secondary field of Vp has the expan-
sion

up(r;r1, . . . ,rN) = 4πik0

∞

∑
n=0

n

∑
m=−n

(−1)mY m
n (r̂)(

A p
n,m jn(kpr)+Bp

n,mhn(kpr)
)
. (17)

4 Exact Solution of the Direct Problem

Considering properties of the harmonic functions [12], and
imposing boundary conditions, on the boundaries of layers



Vp for p = 2, . . . ,P−1, we obtain[
A p

n,m
Bp

n,m

]
= T(1→p)

n

[
A 1

n,m
B1

n,m

]
, (18)

where Tp
n is the transition matrix from layer Vp−1 to layer

Vp (see [6]), and T(1→p)
n is the transition matrix from layer

V1 to layer Vp given by T(1→p)
n = Tp

n Tp−1
n . . .T2

n. Particu-
larly, for the boundary of layer V1 we have[

A 1
n,m

B1
n,m

]
= T1

n

[
H 1

n,m(q)
B0

n,m

]
. (19)

Combining (18) and (19), we obtain[
A P−1

n,m
BP−1

n,m

]
= T(0→P−1)

n

[
H 1

n,m(q)
B0

n,m

]
. (20)

Depending on the conditions on the core’s boundary, we
can extract the unknown coefficients of the overall sec-
ondary field. For a soft or hard core, we obtain

B0
n,m =−

Ψ1
n(kP−1aP)H 1

n,m(q)
Ψ2

n(kP−1aP)
, (21)

where Ψi
n(x) with i = 1,2 denotes the i component of the

boundary transition vector

ΨΨΨn(x) =
[

fn(x) gn(x)
]

T(0→P−1)
n . (22)

The exact form of fn, gn depends on the boundary condi-
tions, e.g.

fn(x) =

{
jn(x), soft core
j
′
n(x), hard core

(23)

gn(x) =

{
hn(x), soft core
h
′
n(x), hard core

(24)

On the other hand, for a penetrable core, we have

B0
n,m =−

T (0→P)
21,n H 1

n,m(q)

T (0→P)
22,n

, (25)

where T (0→P)
i j,n denotes the i j element of transition matrix

T(0→P)
n . The coefficients of the individual secondary fields

can be obtained directly from (21), (25) as follows

b0
j,n =−

Ψ1
n(kP−1aP)H 1

n,m(h j)

Ψ2
n(kP−1aP)

, (26)

b0
j,n =−

T (0→P)
21,n H 1

n,m(h j)

T (0→P)
22,n

, (27)

where
h j =

e j

A jY−m
n (r̂ j)hn(k0r j)

, (28)

with e j the vectors of the standard basis of RN . The overall
far-field g(r̂) and the overall scattering cross section σ take
the forms, respectively

g(r̂) = 4πi
∞

∑
n=0

n

∑
m=−n

(−1)m(−i)nY m
n (r̂)B0

n,m, (29)

σ =
4π

k2
0

∞

∑
n=0

n

∑
m=−n

(2n+1)
(n−m)!
(n+m)!

∣∣B0
n,m
∣∣2. (30)

Eq. (26) coincides with (11) of [8]. For θ j = 0, Eq. (27)
reduces to (3.10) of [6].

5 Low Frequency Approximations

Next, we provide approximations for the overall far-field
and the overall scattering cross section, in the case where
a 2-layered sphere with a soft core is excited by N point
sources. Denoting τ j = a1/r j, ρ = ρ1/ρ0, η = k1/k0, ξ =
a1/a2 and assuming that A j = r je−ik0r j , by means of (29),
we obtain the expansion of the overall far-field

g(r̂) =
N

∑
j=1

e−κ/τ j

{
κS1+

κ
2
[

ρη
2(S1)

2 +S2τ j

(
cosθcosθ j+

sinθsinθ jcos(φ j−φ))
)]

+

κ
3
[

S3−S2

(
cosθcosθ j + sinθsinθ jcos(φ j−φ))

)
+(

sin2θsin2θ jcos(φ j−φ)+ sin2
θsin2

θ jcos(2(φ j−φ))+

1
3
(3cos2

θ j−1)(3cos2
θ −1))

)τ2
j

4
S4

]}
+O(κ4). (31)

For the overall scattering cross section, utilizing (30), we
arrive at

σ = 4πa2
1

{
(S1)

2
∣∣∣∣ N

∑
j=1

e−κ/τ j

∣∣∣∣2[
1− (k0a1)

2(S1)
2 ρη2

ξ
(ρξ +2−2ρ)

]
+

(k0a1)
2 (S2)

2

3

∣∣∣∣ N

∑
j=1

τ j e−κ/τ j

∣∣∣∣2}+O(κ4), (32)

where

S1 =
1

ρ−1−ξ ρ
, (33)

S2 =
ξ 3(1−ρ)+2+ρ

ξ 3(1+2ρ)+2−2ρ
, (34)

S3 =
ρη2(2ξ ρ +ρ−1)

3ξ
(S1)

3, (35)

S4 =−
2ξ 5(1−ρ)+3+2ρ

2ξ 5(2+3ρ)+3−3ρ
. (36)

Eqs. (31) and (32) can be efficiently utilized in the develop-
ment of inverse source and inverse medium algorithms.



6 Numerical Results

We show numerical results for the comparisons between
the exact overall cross section and its corresponding low-
frequency approximation for the case of a 2-layered sphere
with a soft core. The sphere is excited by two point sources
located at r1 = 1.3a1 and r2 = 1.7a1. In the first case, we
suppose that the layer V1 has physical parameters η = 1.75
and ρ = 1.5, whereas in the second case η = 2.25 and
ρ = 2.5. For the computation of the exact overall cross
section, we utilized formula (30).

Figure 2. Comparison between the exact cross section and
its low frequency approximation for a 2-layered sphere with
a soft core excited by N = 2 external point sources for phys-
ical parameters η = 1.75 and ρ = 1.5.

Figure 3. As in Fig. 2, but for physical parameters, η =
2.25 and ρ = 2.5.
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