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Abstract

The propagation of monochromatic TE-polarized waves in
a partially shielded dielectric layer is considered. The exis-
tence of infinitely many complex leaky waves is proved as
well as the absence of complex surface waves.

1 Introduction

The dielectric layer (DL) is one of the most well-studied
waveguide structures in electromagnetics [1, 2, 3, 4]. In
fact, DL is the simplest plane-parallel waveguide (from the
geometrical point of view) and its dispersion equation (DE)
can be written explicitly. On the other hand such a struc-
ture is widely used in practice (planar optical waveguides).
However, still, there is no rigorous proof of the presence
(or absence) of infinitely many real or complex eigenwaves
propagating in DL, to the best of our knowledge.

The main attention of this study is paid to the analysis of the
surface and leaky waves in a partially shielded DL (PSDL).
Note that the closed-form DE of DL can easily be solved
numerically (for real propagation constants). A large num-
ber of numerical results and calculations of surface waves in
DL were obtained [5, 6, 7], however without completing the
justification of the method including rigorous proofs of the
existence of the DE roots. The existence of a finite number
of surface propagating waves is well known and has been
proved graphically [8] (note that here a mathematically ri-
gorous proof has never been completed). For leaky waves
(including complex ones), the solution of DE on a two-sheet
Riemann surface was considered in [9]. In this paper, we fo-
cus on theoretical analysis rather than on numerical results
and numerical methods ending up with mathematically cor-
rect proofs. The main purpose of this article is not only the
correct verification of the occurrence of complex waves in
a DL but also a rigorous proof of the existence of an infinite
number of complex leaky waves. We will look for the odd
TE modes of DL [2, 3]. For even TE-waves, as well as for
odd and even TM-waves, the same results hold.

The general results about the existence of propagating wa-
ves in nonhomogeneous waveguides and localization of
propagation constants on the complex plane have been re-
cently obtained in [10, 11, 12, 13].

2 Statement of the problem

Consider the three-dimensional half space R3 equipped
with the Cartesian coordinate system Oxyz and filled with
an isotropic source-free medium having permittivity ε0ε2 ≡
const and permeability µ0≡ const, where ε0 and µ0 are per-
mittivity and permeability of vacuum. We consider electro-
magnetic waves propagating through a dielectric layer lo-
cated between two halfspaces x < 0 and x > h:

Σ := {(x,y,z) : 0 6 x 6 h} .

The boundary x = 0 is the projection of the surface of per-
fectly conducting (PEC) shield and x = h is the projection
of the dielectric surface. The geometry of the problem is
shown in Fig. 1.

Figure 1. Geometry of the problem.

Determination of normal TE-polarized waves reduces to
finding nontrivial running-wave solutions of the homoge-
neous system of Maxwell equations depending on the coor-
dinate z along which the structure is regular in the form eiγz,{

∇×H =−iε̃E,
∇×E = iH,

(1)

E =
(
0, Ey(x)eiγz, 0

)
, H =

(
Hx(x)eiγz, 0, Hz(x)eiγz) ,

with the boundary conditions for the tangential electric
component on the PEC surface (x = 0)

Ey(0) = 0, (2)

transmission conditions for the tangential electric and mag-
netic field components on the permittivity discontinuity sur-
face (x = h)

[Ey]
∣∣
x=h = 0, [Hz]|x=h = 0, (3)



where [ f ]|x0
= lim

x→x0−0
f (x)− lim

x→x0+0
f (x); and the radiation

condition at infinity which will be formulated and discussed
later.

The Maxwell system (1) is written in the normalized form.
The passage to dimensionless variables has been carried
out; namely, k0x→ x, γ → γ/k0,

√
µ0/ε0H→H, E→ E,

where k2
0 = ω2ε0µ0, ω is a circular frequency (the time fac-

tor e−iωt is omitted everywhere).

We assume that the relative permittivity in the entire space
have the form

ε̃ =

{
ε1, 0≤ x≤ h,
ε2, x > h, (4)

and that ε1 > ε2.

The problem on normal waves is an eigenvalue problem for
the Maxwell equations with spectral parameter γ which is
the wave normalized propagation constant.

The normal wave field in the waveguide can be represented
using one scalar function

u := Ey(x). (5)

Thus, the problem is reduced to finding tangential compo-
nent u of the electric field. Throughout the text below, ( · )′
stands for differentiation with respect to x.

We have the following eigenvalue problem for the tangen-
tial electric field component u: find γ ∈ C such that there
exist nontrivial solutions of the differential equation

u′′+
(
ε̃− γ

2)u = 0, x > 0, (6)

satisfying the boundary condition for x = 0

u(0) = 0, (7)

transmission conditions for x = h

[u]|h = 0,
[
u′
]∣∣

h = 0, (8)

and the condition at infinity.

Thus the resulting field (E,H) will satisfy all conditions
(1)–(3).

Definition 1. The propagating wave is characterised by
real parameter γ .

Definition 2. The evanescent wave is characterised by pure
imaginary parameter γ .

Definition 3. The complex wave is characterised by com-
plex parameter γ such that Reγ Imγ 6= 0.

Definition 4. The surface wave is such that u(x)→ 0, x→
∞.

Definition 5. The leaky wave is such that u(x)→∞, x→∞.

Remark 1. Propagation constant γ characterises the beha-
viour of a wave (propagating, evanescent, or complex) in
the z-direction. Classification of waves as surface or leaky
depends on the behaviour in x-direction. Thus, a wave can
increase in one direction and decrease in the other direction.

For 0 < x < h, we have ε̃ = ε1; thus from (6) we obtain the
equation

u′′+λ
2u = 0, (9)

where
λ

2 = ε1− γ
2, (10)

and λ is a new (complex) spectral parameter.

In view of the boundary condition for the tangential elec-
tric field component on the PEC surface (7), we obtain a
solution of this equation in the form

u(x;λ ) =C1 sinλx, 0 < x < h, (11)

where C1 is a constant.

For x > h, we have ε̃ = ε2; then from (6) we obtain the
equation

u′′−
(
ε

2−λ
2)u = 0, (12)

where ε2 = ε1− ε2 > 0. We choose a solution of this equa-
tion in the form

u(x;λ ) =C2e−(x−h)
√

ε2−λ 2
, x > h, (13)

where C2 is a constant.
Remark 2. In the general case we have the solution of equa-
tion (12) in the form

u =C2e−(x−h)
√

ε2−λ 2
+C3e(x−h)

√
ε2−λ 2

, x > h, (14)

where C2 and C3 are arbitrary constants. Below we explain
our choice of the form (13).

Note that the study of the waves determined by solution
(13) was performed earlier (see, e.g. [4]). However, a ri-
gorous proof of the existence of complex and leaky waves
has not been completed, as well as the classification of wa-
ves.

From transmission conditions (8) and solutions (11) and
(13) we obtain the DE

tanλh+
λ√

ε2−λ 2
= 0. (15)

In (15) the square root is a two-valued complex function
and we will specify its branch below.

Solutions λ of equation (15) define several different types
of waves.

DE (15) and its real- and imaginary-wavenumber solutions
λ for PSDL are well-studied and can be found in many text-
books on electromagnetics, e.g. in [14].



3 Surface waves

In this section we will consider surface waves for which the
electromagnetic field decays at x→ ∞. We suppose that

Re
√

ε2−λ 2 > 0 (16)

in order to specify the radiation condition at infinity. This
condition determines surface waves, i.e. the waves de-
caying at infinity according to (13). Under condition (16)
we obtain that C3 = 0 in (14) for the surface waves.

Theorem 1. Equation (15) under condition (16) has no
(complex) solutions.

Proof. Rewrite equation (15) as follows

tanλh =− λ

+

√
ε2−λ 2

; (17)

taking the squares from the right and left sides we get

sin2
λh = λ

2
ε
−2,

hence,

(ε sinλh−λ ) = 0 or (ε sinλh+λ ) = 0. (18)

Assume that the first equation of (18) has a solution λm =
αm + iβm. Then we have

sinλmh = λmε
−1

and from (17) we obtain

Re
√

ε2−λ 2
m =−ε cosαmhcoshβmh > 0;

therefore cosαmh < 0. On the other hand we have

Imsinλmh = Imλmh/ε,

hence

cosαmh =
βmh

ε sinhβmh
> 0

which is a contradiction yielding a conclusion that the first
equation (18) has no solution λm satisfying condition (16).

Repeating the above reasoning for the second equation (18)
we arrive at the same conclusion. Thus equation (15) has
no solution under condition (16).

Theorem 1 establishes that there are no complex surface
waves satisfying condition (16).

4 Leaky waves

The occurrence and analysis of leaky waves together with
their various applications in microwave engineering have
been a subject of numerous studies since the early 1950s
(see e.g.[15, 16, 17]). However, rigorous proofs of their
existence has never been completed.

We assume that
Re
√

ε2−λ 2 < 0 (19)

in order to specify the radiation condition at infinity. This
condition determines the leaky waves increasing at infinity.
We assume that C3 = 0 in (14) and solution u have the form
(13).

Theorem 2. Under condition (19) equation (15) has infini-
tely many (complex) roots forming a number sequence that
tends to infinity.

Proof. Introduce the function f (z) := zsin
(
z−1
)

where z =
1/λh. f (z) has an isolated essential singularity at z = 0.
Set a := εh > 0 and consider two equations f (z) = a−1

and f (z) = −a−1. From Picard’s theorem (see [18]) it fol-
lows that one of these equations has infinitely many roots
zk(zk 6= 0), zk → ∞, k→ ∞ in a neighborhood of the point
z = 0. Indeed, from Picard’s theorem we conclude that
there is only one exceptional value A such that the equa-
tion f (z) = A does not have infinitely many roots.

Let us consider the first equality sin
(
z−1
)
= a−1z−1. Then

cos
(
z−1)=±√1− sin2 (z−1) =±

√
1−a−2z−2. (20)

Taking a real part of cos
(
z−1
)
, we get

Recos
(
z−1)= cos

(
z′|z|−2)cosh

(
z′′|z|−2), z = z′+ iz′′

(z′′ 6= 0 because there are no real solutions of the equation

zsin
(
z−1
)
= a−1 for |z|< 1

a
). Since cosh

(
z′′|z|−2

)
> 0, we

obtain the following equality

signRecos
(
z−1)= signcos

(
z′|z|−2).

On the other hand, taking imaginary part of sin
(
z−1
)

we
have

Imsin
(
z−1)= cos

(
z′|z|−2)sinh

(
−z′′|z|−2)=−z′′a|z|−2⇒

⇒ cos
(
z′|z|−2)= z′′

a|z|2 sinh(z′′|z|−2)
> 0.

Consequently, signRecos
(
z−1
)
> 0. According to the con-

dition (19) we have

Re
√

ε2−λ 2 = εhRe
√

1−a−2z−2 < 0,

i.e. we should choose the sign of the root in the formula
(20) as follows

cos
(
z−1)=−√1−a−2z−2



in order to satisfy the condition signRecos
(
z−1
)
> 0.

Let zk be a root of equation f (z) = a−1; then

sin
(
z−1

k

)
= a−1z−1

k , cos
(
z−1

k

)
=−

√
1−a−2z−2

k .

Hence

tan
(
z−1

k

)
+

a−1z−1
k√

1−a−2z−2
k

= 0. (21)

Thus we obtain that the equation

tanλkh+
λkh√

ε2

h2 −λ 2
k h2

= 0,

has a solution λk = z−1
k h−1.

Repeating the above consideration for the equation f (z) =
−a−1 we arrive at the same conclusion.

Since one of the equations f (z) = a−1 or f (z) =−a−1 has
infinitely many roots in the neighborhood of z= 0 we obtain
that the equation (15) has infinite number of roots at infinity
under condition (19).

Theorem 2 establishes the existence of infinite number of
complex leaky waves (that increase at infinity satisfying
condition (19)). The propagation constants of such leaky

waves are γ̃
leaky
k =

√
ε1−λ 2

k .

5 Conclusion

We have proved the existence of complex, leaky, and sur-
face waves in PSDL. Two general wave families of the pro-
pagating surface and complex leaky waves have been iden-
tified governed by the dependence of their wavenumbers√

ε1− γ2 on the problem parameters, location on the com-
plex plane, and behavior at infinity.
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