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Abstract 
 

This article describes a method of empirical mode 

decomposition that allows processing nonlinear and 

nonstationary signals. This method was used to remove 

the trend and filter the data of slant total electron content 

(hereinafter TEC). The results obtained are compared with 

the most commonly used approaches to processing total 
electron content data, which include digital filtering 

methods such as moving average filtering and removing 

the trend from the data of total electron content by 

subtracting approximating polynomials. 

 

1 Introduction 
 

TEC measurement using phase data of global navigation 

satellite systems (GNSS) signals reception is currently 

one of the traditional methods for solving problems of 

modern geophysical science [1]. TEC measurements were 

used to study sources of ionospheric plasma disturbances 

such as solar terminator, solar flares, geomagnetic storms, 

earthquakes, meteors fall, rocket launches, exposure to 

powerful ground-based radio radio emission, and others 

[2-8]. The study of various ionospheric irregularities and 

the search for their precursors is an urgent task today, 

since these irregularities can affect the propagation of 
radio waves and significantly reduce the reliability and 

noise immunity of ground-based and space-based radio 

systems. However, in order to get information about the 

magnitude and scale of the recorded irregularities, along 

with making measurements of the absolute values of TEC, 

it is necessary to distinguish the TEC variations caused by 

different ionospheric processes. To do this, first of all, 

remove the trend from the TEC data that depends on the 

change elevation angle of satellite and, accordingly, is 

associated with the distance from this satellite to the 

receiver's GNSS, and then perform the digital filtering 
procedure. Methods such as moving average and 

subtraction of approximating polynomials are most often 

used to remove a trend. Digital filtering methods such as 

moving average, Butterworth filters of various orders, and 

others are used to select TEC variations. 

 

The method of empirical mode decomposition of signals 

used in this paper is relatively new, but no less reliable. 

This method is suitable for processing TEC data, since it 

works with nonlinear and nonstationary signals, which 

classical methods such as Fourier transform cannot afford, 

and does not contain the limitations of wavelet analysis, 

since it does not require a priori information about the 
signal to select the base function. 

 

In this paper, we consider and implement a method for 

removing a trend from the slant TEC data and filtering 

them based on the empirical mode decomposition method. 

 

2 Empirical mode decomposition method 
 

In nature, we most often deal with nonlinear and 

nonstationary signals, for the analysis of which an 

adaptive basis is required, which would be obtained in the 

course of a certain method from the signal itself. This 

method was proposed by Norden Huang in 1995 and 

called the empirical mode decomposition method. In 

1998, the method was extended by the Hilbert transform 

and generalized to analyze any time data [9-11]. It is often 

used in studies of climate change, ocean waves, in the 

analysis of satellite, geophysical, meteorological and 
biomedical data, etc. [12-14]. This method is purely 

empirical and does not need a priori information, which 

makes it highly adaptive to various tasks [15, 16]. In a 

number of papers, it is shown that the method of empirical 

mode decomposition is superior to wavelet analysis in 

terms of frequency-time resolution [17]. 

 

The empirical mode decomposition method is the first 

stage of the Hilbert-Huang transformation. The second 

stage is the Hilbert transformation. It is used to calculate 

the instantaneous amplitudes and frequencies 

corresponding to each component of the decomposition, 
and on their basis, the instantaneous Hilbert spectrum of 

the input process is constructed. The latter will not be 

discussed in this work. 

 

The method of empirical mode decomposition of a signal 

is an empirical method for decomposing any source 

signal, including nonlinear and nonstationary, into 

components called intrinsic mode functions (IMF) and 

residual trends that are not set in advance. The latter are 

the basis of the studied signal, obtained from it 

empirically, as a result of decomposition. Each IMF is an 
oscillatory process that, unlike a harmonic signal, has 

frequency and amplitude modulation. Moreover, each 

subsequent selected mode has a lower frequency. 

 

It is necessary that every IMF corresponds to the 

following statements: 



1) the difference between the total number of extreme 

points and the number of intersections of this function 

with the abscissa axis must not exceed one. 

 

2) at any point in the function, the average value between 
their upper and lower envelopes obtained by 

approximating local maxima and minima, respectively, 

must not be different from zero. 

 

IMF are defined as follows. Initially, local maxima and 

minima of the process are found, which are used to 

construct the upper and lower envelopes of the process 

using the cubic spline method. Next, a function of the 

average values of the found envelopes (local trend) is 

defined, which is then subtracted from the original 

process. As a result, the first approximation to the first 

IMF will be obtained. Further, the previous actions are 
repeated again over the received fashion estimate, and this 

happens until the residual criterion is reached. And as a 

result, the first IMF will be obtained. To find the next 

IMF, you need to subtract the already found IMFs from 

the original signal and repeat the described procedure 

again. This continues until all IMFs are found, that is, 

when the remainder does not contain extremes. As a result 

of decomposition, a finite number of IMFs and the 

resulting remainder are extracted from the original signal, 

which is either a constant value or a slowly changing 

trend. 
 

Each resulting component can be mapped to a separate 

physical process that caused it to occur. 

 

3 Discussion of results 
 

For data processing, a program was written that 
implements the method of empirical mode decomposition. 

By applying this program to the existing TEC data, the 

residual trend was effectively removed from the slant 

TEC data. 

 

In addition to the trend, using the method described 

above, we were able to isolate fluctuations of various 

scales contained in the signal in the form of separate IMFs 

ordered by frequency from the TEC data. In this case, 11 

IMFs are selected (see Fig. 1b) responsible for various 

physical processes. Due to the integral nature of TEC 
measurements, the study of individual IMFs, as well as 

the physical processes responsible for their formation and 

contribution to the overall TEC picture, requires a 

separate detailed study and has not been carried out in this 

work. 

 

As mentioned earlier, obtaining a residual trend using the 

empirical mode decomposition method is the result of 

selecting IMFs from the TEC data, which in total 

represent TEC variations after the trend is removed. 

 

 
 

Figure 1. Panel a – slant TEC dependence on time is 

shown in red line, and the residual trend obtained by 

empirical mode decomposition is shown in blue line. 

Panel b – all IMFs selected using this method and the 

residual trend located in the lower right corner. 

 

TEC variations can be obtained by various methods. 

Results of applying different methods to the same TEC 
data (the red line in Fig. 1a) are shown in Fig. 2. The 

results obtained after removing the residual trend using 

the empirical mode decomposition method are shown in 

the blue curve in Fig. 2. The TEC variations obtained by 

subtracting the approximating polynomial of the sixth 

degree, followed by filtering the series and only digital 

filtering by the moving average are represented by the 

green and red lines, respectively. 

 



 
 

Figure 2. Variations of TEC, obtained by various 

methods of trend removal. In blue line, the TEC variations 

obtained after removing the residual trend by the 

empirical mode decomposition method are shown; in 

green line, the TEC variations obtained by subtracting the 

moving average; in red line, the TEC variations obtained 

by subtracting the approximating polynomial of sixth 

degree and followed filtering the obtained data by the 
moving average. 

 

The last two methods do their job well if reliable 

information is known a priori about the processes that 

cause certain ionospheric perturbations, i.e. we know 

exactly the upper limit of the range of periods of studied 

variations associated with the response to a particular 

source of perturbation of the ionospheric plasma. But 

most often, when studying natural disturbances in the 

Earth's ionosphere, the source of their excitation is either 

unknown, or we are dealing with a summing response in 
the signal. In this case, the contribution of various 

physical processes to the TEC, including due to its 

integral nature, is difficult to determine. Therefore, it is 

more reliable, especially in the conditions of automatic 

processing of large arrays of GNSS data, to remove the 

trend using empirical mode decomposition of the signal, 

which does not require a priori information. 

 

 
 

Figure 3. Example of removing a trend from TEC data 

that contains a break. On the top panel, the blue color 

shows the TEC's time dependence, and the red color 

shows the residual trend obtained by the empirical mode 

decomposition method. In the lower panel, the blue color 

shows the time dependence of the TEC variations 
obtained by removing the residual trend using the 

empirical mode decomposition method, and the red color 

shows the TEC variations obtained by subtracting the 

moving average. 

 

The empirical mode decomposition method also allows 
you to remove a trend from TEC data that contains breaks 

(upper panel Fig. 3a). This makes it more convenient to 

use in automatic processing of big data of GNSS 

measurements, since it is not required, as in the case of 

the moving average method and high-order polynomials, 

to search for break points and process individual TEC 

data. The TEC variations obtained by empirical mode 

decomposition for the TEC data containing the break are 

represented by the blue line in Fig. 3b, TEC variations 

filtered by the moving average are shown in red line in 

Fig. 3b. As can be seen from Fig. 3b, the TEC variations 

obtained by both methods are very similar in both shape 
and amplitude. 

 

4 Conclusion 
 

It is shown that the method of empirical mode 

decomposition of the signal can be used to remove the 
trend associated with changes in the elevation angle of the 

satellite, and consequently, the length of the satellite 

signal path section passing through the ionospheric 

plasma. During the work, it was also found that this 

method allows you to remove the trend from the TEC data 

even if the data contains breaks. Despite the fact that the 

method does not have strict scientific and theoretical 

grounds and is completely empirical, the example of TEC 

data processing shows the correctness of its work and 

compares it with the most commonly used methods of 

trend removal and digital filtering of TEC data. The 

method used allows processing nonlinear and 
nonstationary signals, since it does not require any a priori 

data about the signal since the basis is extracted from the 

signal itself. This fact makes it possible to use it 

effectively in systems for automatic analysis and 

processing big data of GNSS measurements. 
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