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Abstract—This paper proposes a special technique for coupling
matrix extraction for both lossy and lossless filters for the first
time. Minimum sample points are used to perfectly locate poles
and zeros. Proposed optimization offers exact approximation of
characteristics polynomial (CP). Losses are introduce by proper
scaling of CP. Coupling matrix (CM) is derived from scaled CP
for fine tuning. Two different filter configurations are considered
for validation of proposed CM extraction method. Finally, a
lossy filter tuning case is examined to demonstrate practical
applicability of the proposed extraction technique.

Index Terms—Transmission zero (TZ); reflection zero (RZ);
coupling matrix (CM); transmission pole (TP); tuning; quality
factor (Qu); optimization.

I. INTRODUCTION

Microwave filter tuning always remain serious challenge

to industries. Conventional human experience based tuning

approach is not only time consuming but also suffer from inac-

curacy. To ease tuning burden, researchers developed comput-

erized automated filter tuning method. Fuzzy or neural network

based tuning algorithm is used in [1]–[3]. But these methods

are restricted to lossless filters with simple in-line coupling

topology. Some researchers apply vector fitting technique [4]

to tune unevenQu filters. Lossy filter tuning by complex math-

ematical transformation is discussed in [5]. Recently, lossy

filters tuning method is provided in [6]. However, systematic

approach for lossy CM extraction hence tuning remain as

unsolved issue for microwave filter designers specially for

filters having box coupling topology [7]. This work mainly

focuses on CM extraction for box topology filters i.e. having

multiple lossy and lossless cross-couplings.

Since CM synthesis and CM extraction are transpose op-

eration to each other hence, in case of lossy filters, coupling

matrix extraction approach is quite different since the synthesis

is unique. This paper imparts a new extraction technique that

is applicable to complex coupling matrix for highly lossy as

well as conventional lossless filters. Prime achievements of this

work are: (i) exact pole-zero approximation from minimum

sample points, (ii) lossless, lossy even asymmetric lossy filter

can be tuned by proposed method which is illustrated for the

first time, (iii) a robust CM extraction technique is proposed

unlike previous works, (iv) finally, CM extraction and tuning

of box section lossy filter with unequal unloaded quality

factor (Qu) is demonstrated successfully.

II. CM EXTRACTION METHOD

General scattering matrix of any filter is given by [7]:
[

S11 S12

S21 S22

]

=
1

E (s)

[

F11 (s) P̂ (s)

P̂ (s) F22 (s)

]

(1)

Where P̂ is normalized P by ǫ. This paper presents a unique

optimization technique by exact pole-zero approximation fol-

lowed by CM extraction as discussed in following steps.

Step 1: Sample S-parameter data from measurement or simu-

lation results. Ideally required sample points is sum of TZs and

RZs but more data points are preferable. One can pre-processed

(smoothing or averaging) raw data for noise cancellation which

results better approximation hence perfect CM extraction.

Step 2: Perform bandpass (f ) to low pass frequency (Ω)
domain transformation and use phase de-embedding method

to eliminate phase loading error as discussed in [4].

Step 3: Determine loss factors [µp, µ11, µ22] from magnitude

response of S21, S11, and S22 respectively for lossy filters.

Step 4: Calculate Υ= S21

S11

from pre-processed data points for

TZ, RZ optimization cycle. During optimization roots of P̂

and F11 will be evaluated to match previously calculated [Υ].
Step 5: Calculated Υ∗={Υ∗

1
,Υ∗

2
, . . . ,Υ∗

N} at N frequency

points {Ω1,Ω2, . . . ,ΩN} will be used as objective function for
TZ, RZ optimization algorithm. Hence optimization problem

can be expressed as:

minimize ∆

such that,
∑

‖Υi (ΩK)−Υ∗

i ‖ ≤ ∆ i = 1, 2, ...., N (2)

where ∆ is error tolerance and Υ(ΩK) is evaluated

as Υ= S21

S11

= P̂
F11

, and the optimization parameters are the

roots of P (or TZs), F11 (or RZs) and ǫ respectively. The

constrained optimization problem (2) is solved in Matlab.

Step 6: Once P̂ and F11 (or F22) are known then polynomial

E can be derived from unitary condition.

Step 7: Scaled E, P̂ , F11, and F22 by corresponding loss fac-

tors (µp, µ11, µ22) to transform into lossy polynomials. Note

that µp=µ11=µ22=1 for lossless filters and these factors can

be equal (symmetric lossy filter) or unequal (asymmetric lossy

filter) with any value depending upon magnitude response.

Step 8: Coupling matrix can be derived from admittance matrix

[Y ], once all polynomials are obtained as given in [7].



Following these basic steps one can perfectly extract CM for

highly lossy as well as lossless filters. Therefore this work

proposes more general and robust approach compare to all

previously reported works. CM extraction technique for two

different lossy filters will be discussed in following Sec. III.

III. CM EXTRACTION EXAMPLES

Here we will discuss about two different filters: symmetric

6dB lossy filter and other one is asymmetric lossy case. Since

proposed CM extraction technique is primarily on low pass

domain (Ω) therefore one need to follow standard transforma-

tion as mentioned in [4]. Data sampling and pre-processing

will not be discussed here as it is not our main focus and all

analysis will be discussed in Ω domain only.

A. Example 1: A Four Pole Symmetric 6 dB Lossy Filter

A lossy 4th order Elliptic filter is considered for CM

extraction. Following all extraction steps in, one can derive CP

i.e. E, P̂ , F11, and F22. Since all losses are equal, therefore

one need to scale down P̂ and F11 (or F22) polynomials

by common loss factor µp=µ11=µ22= 0.5 (i.e. 6 dB loss).

This scaling operation transform lossless polynomials into

lossy polynomials hence lossy responses as shown in Fig. 1.

Table I provides a comparison between ideal and extracted

polynomials which points out exact matching between both.
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Fig. 1: Lossless to lossy transformation by scaling µ= 0.5

(Example:1) (a) |S21|, and (b) |S11| magnitude response.

TABLE I:

Ideal and extracted characteristics polynomial (Example:1)

Poly Ideal Extracted

E(s)
s4 + 2.57s3 + 4.34s2+

4.32s+ 2.56
s4 + 2.59s3 + 4.34s2+

4.31s+ 2.53
P (s) s2 + 4 s2 + 3.994
F11(s) = F22(s) s4 + 1.04s2 + 4.32s+ 0.14 s4 + 1.04s2 + 4.30s+ 0.13
Epsilon (ǫ) 1.5671 1.5659

Then lossy CM is obtained from these derived scaled

polynomial and compared in Fig. 2. One can observe most

of the elements matches well with minor error in few cou-

pling elements as highlighted in Fig. 2(b). Finally both S-

parameter responses are compared and presented in Fig. 3.

Both responses replicate each other which imply effectiveness

of this technique to extract CM precisely for box coupling

topology filters with symmetric losses.
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Fig. 2: Coupling matrix for 4th order 6 dB symmetric lossy

filter (Example: 1) (a) ideal CM, and (b) extracted CM.
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Fig. 3: Performance comparison of symmetric lossy filter

(Example: 1) (a) |S21|, and (b) |S11| response.

B. Example 2: Four Pole Asymmetric Lossy Filter

CM extraction for a more general lossy filter with different

losses i.e. S21= 6dB, S11= 3dB and S22= 9dB is considered

as last example. Basic steps involved for proper approximation

of CP followed by lossy transformation by proper scaling of

polynomials i.e. P̂ ′=µp.P̂ , F
′

11
=µ11.F11 and F ′

22
=µ22.F22 as

analyzed in Sec. II. Ideal lossy CM is compared with extracted

CM with small errors in few coupling elements as depicted in

Fig. 4. Extracted TZs and RZs are co-located with ideal one as

plotted in Fig. 5(a). Further exact reproduction of S-parameters

as shown in Fig. 5, validates proposed CM extraction approach.
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Fig. 4: Coupling matrix comparison for asymmetric lossy

case (Example: 2) (a) ideal CM, and (b) extracted CM.

IV. CM EXTRACTION FOR FINE TUNING

One can use CM extraction technique at intermediate stages

for efficient tuning of such filters. As CM carries complete

information regarding all couplings as well as resonators,

therefore one can extend this technique for coarse and fine

tuning of lossy filters. Since the proposed method can extract

CM perfectly from measurement or simulation data, so one

can apply it for efficient tuning of box topology lossy filters

which will be demonstrated by a suitable example.

Consider a 4th-order lossy filter example whose tuned CM

along with coupling diagram are shown in Fig. 6(a) and

Fig. 6(b) respectively. One direct coupling element m23 is
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Fig. 5: Response comparison for asymmetric lossy case

(Example:2) (a) pole-zero, (b) |S21|, (c) |S11|, and (d) |S22|.

disturbed intentionally (marked in Fig. 6(a)) and as a result

filter response changes completely as shown in Fig. 6. Now

one needs to identify this perturbed coupling elementm23 from

de-tune responses to tune it properly.

Following all extraction steps, one can derive coupling

matrix for this heavily de-tuned filter. Extracted CM for this

de-tuned case is shown in Fig. 7(a). Further an error estimator

called residue matrix which is nothing but element wise

difference between actual de-tuned CM and extracted de-tune

CM, is calculated. Note that most of the elements in residue

matrix are zero which imply CM extraction was perfect.

Residue matrix along with exact matching de-tuned (ideal

and extracted) responses are shown in Fig. 7. Since de-tuned

coupling element (m23) is identified successfully, therefore one

can easily tune it by proper adjustment of respective physical

parameters (gap or coupled length) to obtain desired coupling

coefficient m23 value.
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Fig. 6: Tuned and detuned lossy filter response (a) tuned

CM, (b) coupling topology, (c) |S21|, and (d) |S11|.
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Fig. 7: Detuned lossy filter responses (a) extracted detuned

CM, (b) residue matrix, (c) |S21|, and (d) |S11| responses.

V. CONCLUSION

A robust tuning technique using CM extraction method for

lossy filters has been proposed in this paper. Perfect CM

extraction has achieved from minimum sample points by exact

pole-zero approximation. Proposed extraction method has been

verified by examining a symmetric lossy and an asymmetric

lossy filter. Finally, a lossy filter tuning example has been

demonstrated. Further for future work, a higher order multiple

cross-coupled lossy filter can be tuned as an experimental

verification of the proposed extraction technique.
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