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Abstract—For the emerging Internet of Things (IoTs), one
challenge is how to support massive connectivity with high
spectrum efficiency (SE) and energy efficiency (EE). Against
this background, we propose that each user equipment (UE)
with multiple low-cost antennas but only one power-hungry
radio frequency (RF) chain exploits spatial modulation (SM) to
randomly access the network, where SM is used to enhance both
the uplink SE and EE. However, due to massive multi-antenna
UEs while the limited number of base station (BS) antennas, how
to realize the reliable random access for massive connectivity
is challenging. Fortunately, the access in IoTs exhibits the
sporadic machine-type communication (MTC), which indicates
the unchanged sparsity of active UEs in several successive time
slots. Moreover, SM signals also exhibit the sparsity due to only
one RF chain but multiple antennas for each UE. By leveraging
these sparse features of random access signals, we propose
a compressive sensing (CS)-based multi-user detector (MUD),
which can reliably support massive random access. Simulation
results also verify the good performance of our proposed scheme.

Index Terms—Compressive sensing (CS), random access,
machine-type communication (MTC), Internet of Things (IoT),
spatial modulation (SM), multi-user detector (MUD)

I. INTRODUCTION

The emerging Internet of Things (IoTs) enables massive

physical objects to access Internet and exchange information,

and it has been reshaping and will have a significant impact on

human life [1]. In IoTs, it is expected that the machine-type

communication (MRT) will grow exponentially, and thousands

of UEs per square kilometer will be connected to the network

[2], [3]. As a consequence, how to effectively support massive

connectivity with high spectrum efficiency (SE) and high

energy efficiency (EE) is desired [1].

To achieve both high SE and EE for such massive con-

nectivity in IoTs, as shown in Fig. 1, we propose the s-

patial modulation (SM)-based uplink random access [4]. To

be specific, each user equipment (UE) employing multiple

antennas but only one radio frequency (RF) chain adopts SM

for the uplink access, while the base station (BS) equipped

with multiple antennas serves massive connectivity. Clearly,

due to extra spatial degree of freedom derived from multiple

antennas at each UE, SM can be used to improve the uplink

throughput [4]. Moreover, due to multiple low-cost antennas

but only one power-hungry and high-cost RF chain for each

Fig. 1. This paper proposes the SM-based random access for IoTs, where
the proportion of active UEs in each time slot is small due to sporadic MTC.

UE, such an uplink access scheme also enjoys high EE [4].

On the other hand, for IoTs with ultra-dense UEs per square

kilometer, due to massive UEs with multiple antennas while

the limited number of antennas at the BS, how to reliably

support massive connectivity can be challenging. Fortunately,

experiments and theoretical analysis have shown that the

uplink access in IoTs appear to have the sporadic MTC [2],

[3]. That is to say, although the number of UEs in the network

can be large, the number of simultaneously active UEs can

be small. Such small proportion of active UEs compared to

the large number of total UEs indicates the sparsity of active

UEs. Moreover, the sparse pattern further remains unchanged

in several successive time slots, since more than one time

slots will be used for uplink access. Additionally, due to the

much smaller number of RF chains than that of antennas at the

UEs, the random access SM signals also have the sparsity. By

leveraging these sparse features of random access signals, we

propose a compressive sensing (CS)-based multi-user detector

(MUD), which can achieve the reliable detection performance

at the BS. Simulation results also verify the good performance

of the proposed scheme.

Throughout our discussions, the boldface lower and upper-

case symbols denote column vectors and matrices, respec-

tively. The Moore-Penrose inversion, transpose, and conjugate

transpose operators are given by (·)†, (·)T and (·)∗, respective-

ly. The ℓ2-norm is given by ‖ · ‖2, and |Γ|c is the cardinality

of the set Γ, and Γ(m) denotes the m-th element of Γ. The

support set of the vector a is denoted by supp{a}. a|Γ denotes

the entries of a whose indices are defined by Γ, while A|Γ



denotes a sub-matrix of A with column indices defined by Γ.

[a]i denotes the i-th entry of the vector a.

II. PROPOSED CS-BASED MUD

We consider the BS employing M antennas can serve N
UEs, where each UE is equipped with nt > 1 antennas

but only 1 RF chain, and SM is exploited for the uplink

access. Moreover, N UEs adopt random access to connect

the network. In the t-th time slot, the received random access

signal can be expressed as

r
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(t)
n s

(t)
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(t)
s̃
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where r
(t) ∈ CM×1, H

(t)
n ∈ CM×nt is the MIMO

channel matrix associated with the n-th UE in the t-
th time slot, s

(t)
n ∈ Cnt×1 is the n-th UE’s SM sig-

nal, w
(t) ∈ CM×1 is additive white Gaussian noise
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CM×(Nnt) is the aggregate MIMO channel matrix, and s̃
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∈ C(Nnt)×1 is the aggre-

gate SM signal.

Due to the large Nnt but limited M , the uplink multi-user

detection problem (1) can be a challenging large-scale under-

determined problem. Typically, conventional detectors require

M ≥ Nnt for reliable detection [4]. Thanks to the sporadic

MTC in IoTs, the number of simultaneously active UEs Na ≪
N . In this way, (1) can be further written as
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where Ω(t) is the index set of active UEs in the t-th time

slot, Na =
∣

∣Ω(t)
∣
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≪ N , s
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are the ag-

gregate MIMO channel matrix and aggregate SM signal as-

sociated with active UEs, respectively. Such sparisty of active

UEs motivates us to exploit CS theory to detect the indices of

active UEs Ω(t) and the associated SM signals s
(t)
n for n ∈ Ω(t)

with M ≪ Nnt.

Moreover, since each UE’s access signal will be transmitted

in multiple successive time slots, the sparsity of active UEs

can be considered to be unchanged in J > 1 time slots, i.e.,

Ω(1) = Ω(2) · · · = Ω(t) = · · · = Ω(J) = Ω, 1 ≤ t ≤ J. (3)

Note that we consider {H
(t)
n }Jt=1, ∀n are quasi-static due to

the temporal channel correlation, i.e., H
(t)
n = Hn [6].

Additionally, since each UE equipped with nt antennas and

only one RF chain adopts SM to access the network, their SM

signals have the sparsity level of one, i.e.,
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Algorithm 1 Proposed CS-based MUD.

Input: Received signal r(t), the channel matrices {Hn}
N

n=1, where
1 ≤ t ≤ J .

Output: Estimate of active UEs’ index set Ω̂ and associated SM

signals ŝ
(t)
n for n ∈ Ω̂.

1: z
(t) = r

(t), ∀t;
2: Θ

(t)
0 = ∅, ∀t;

3: k = 1;
4: repeat
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12: z
(t) = r
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13: k = k + 1;

14: until Θ
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for n ∈ Ω, and Q is the constellation

set such as Q-QAM with the order of Q = |Q|c.

By exploiting these sparse features, we propose a CS-based

MUD to solve the challenging massive random access. The

proposed CS-based MUD can be illustrated in Algorithm

1, which is developed from the classical subspace pursuit

(SP) algorithm [5]. Specifically, in Algorithm 1, lines 1∼3

define the initial residual, support set, and iteration index,

respectively. The loop including lines 4∼14 stops when

Θ
(t)
k−1 = Θ

(t)
k , ∀t. In each iteration, line 6 identifies the

index of each UE’s potential active antenna according to

correlation operation in line 5; line 7 identifies the indices

of potential active UEs; line 8 obtains preliminary support

set; line 9 estimates the constellation symbols according to

the preliminary support set using least squares (LS); line 10

prunes the support set by selecting the Na-best support set;

line 11 re-estimates the constellation symbols according to the

pruning support set using LS; line 12 computes the residual;

line 13 updates the iteration index. Finally, after the iteration

stops, line 15 obtains the estimation of active UEs’ indices

and the associated random access SM signals. Note that in

Algorithm 1, b
(t) =

[

(

b
(t)
1

)T

,
(

b
(t)
2

)T

, · · · ,
(

b
(t)
N

)T
]T

∈

CNnt×1, ∀t with b
(t)
n ∈ Cnt×1, ∀t, n and c

(t) =
[

(

c
(t)
1

)T

,
(

c
(t)
2

)T

, · · · ,
(

c
(t)
N

)T
]T

∈ CNnt×1, ∀t with c
(t)
n ∈

Cnt×1, ∀t, n.
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Fig. 2. Comparison of detection probabilities of active UEs achieved by
conventional SP algorithm and proposed CS-based MUD versus the number
of BS antennas M .

III. SIMULATION RESULTS

A simulation study is carried out to investigate the perfor-

mance of the proposed SM-based random access scheme and

the associated CS-based MUD. In simulations, we consider

nt = 4, N = 128, Na = 16, J = 10, and QPSK constellation

set is adopted. Moreover, we provide the performance of

conventional linear minimum mean square error (LMMSE)-

based detector [4] and the SP-based detector [5]. The oracle

LS estimator with the priori information of indices of active

UEs and indices of their active antennas for SM is also plotted

as the comparison benchmark.

Fig. 2 compares the detection probabilities of active UEs

achieved by conventional SP algorithm and proposed CS-

based MUD versus the number of BS antennas M in noiseless

scenario. Clearly, our proposed CS-based MUD outperforms

conventional SP algorithm. The good performance of our

proposed detector lies in two folds. First, the proposed CS-

based MUD leverages the structured sparsity of active UEs

in multiple successive time slots as shown in (3). Second, we

further exploit the sparsity of SM signals. Specifically, due

to only one RF chain for each UE, each active UE’s SM

signal has the sparsity level of one, i.e.,

∣
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∣
supp
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s
(t)
n

)
∣
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c
= 1

for n ∈ Ω, and thus the aggregate SM signal s̄(t) has has the

sparsity level of Na.

Fig. 3 compares the bit-error-rate (BER) performance

achieved by different detectors against different SNRs in the

proposed SM-based random access scheme and conventional

random access scheme, where M = 64. For the conventional

random access scheme, each UE has one antenna and one

RF chain without using SM [3]. It can be observed that the

superior performance of the proposed CS-based MUD to the

conventional LMMSE-based and SP-based signal detectors is

clear. Moreover, the performance gap between the oracle LS

detector and the proposed CS-based MUD is less than 0.1

dB. It should be pointed out that the oracle LS detector has

the priori information of active UEs’ indices and their active
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Fig. 3. The BERs achieved by different detectors against different SNR’s
in the proposed SM-based random access scheme and conventional random
access scheme.

antennas’ indices. Finally, compared with the conventional

random access scheme with 2 bit per channel use (bpcu) due

to QPSK for each UE, the proposed SM-based access scheme

with 4 bpcu (QPSK can carry 2 bits and the pattern of active

antenna can carry 2 bits) only suffers from a negligible BER

loss. Hence, the high SE of the proposed SM-based random

access scheme is self-evident.

IV. CONCLUSIONS

This paper investigates the challenging massive random

access for the emerging IoTs. The contribution of this paper

lies in two folds. First, we propose an SM-based uplink

random access scheme. In this scheme, each UE equipped

with multiple low-cost antennas but only one power-hungry

RF chain adopts SM to randomly access the network. Second,

we propose a CS-based MUD at the BS. By exploiting the

unchanged sparsity of active UEs in multiple time slots and

the inherent sparsity of SM signals, the proposed scheme can

achieve reliable multi-user detection performance. Simulation

results also confirm the good performance of our proposed

scheme.
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