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Abstract

Equivalent edge currents (EECs) line integration to com-

pute the diffracted field has the advantage of less require-

ment of computation time and resources. The methods of

EECs present some ambiguity in the definition of currents

at general edge points which do not satisfy the diffraction

law. Modified edge representation (MER) is an unique con-

cept for a complete definition of EEC. The line integration

of MER EEC results uniform and accurate fields every-

where including geometrical boundaries. Here, MER EECs

has been used to compute the diffracted field from the slope

of the incident field. The dipole wave scattering from flat

circular disk is considered as the numerical examples.

1 Introduction

Physical Optics (PO) is an asymptotic high frequency nu-

merical method based on surface currents. In PO, the scat-

tering fields are obtained by surface integration of surface

electric current density, which are performed numerically

in general. Since the reduction of the surface integral to

line one provides the great saving of the numerical compu-

tation time, it has been investigated for long time by many

workers in both exact [1–4] and asymptotic manners [5, 6].

PO surface integration is reduced to PO MER equivalent

edge currents (EECs) line integration in [7] where EECs

for physical optics (PO) components at general points are

obtained by utilizing the fictitious edges and PO diffraction

coefficient. In PO, fringe wave is neglected, If the fringe

wave diffraction coefficients added with the PO diffraction

coefficients, the diffraction coefficient takes the form of

GTD diffraction coefficient given by Keller in [8, eq. (2)]

and this MER EECs technique with GTD diffraction co-

efficient is known as GTD MER. As PO MER is derived

directly from PO surface integration, PO MER and hence

GTD MER gives the slope effects of the incident field with-

out any extra computation unlike UTD [9, eq. (13-110)].

The slope wave diffraction is a higher order diffraction

and it becomes more significant when the incident field

at the point of diffraction vanishes. In this paper GTD

MER is used to compute the slope wave diffraction and

computation of diffracted field of dipole wave from circu-

lar disk is considered as the numerical example. Method

of moments based numerical electromagnetic code Wipl-D

(Wipl-D [10]) is considered as the reference.

2 MODIFIED EDGE REPRESENTATION

(MER) FOR THE DEFINITION OF EEC

The method enabling the surface to line integral reduction

is the key element in deriving the equivalent edge currents

(EECs). A concept of modified edge representation(MER),

which extends the definition of EEC for diffraction points

to those for general edge points was introduced in [11–13].

Classical Keller’s diffraction coefficients were adopted for

the computations of the diffracted field as follows.

2.1 Modified Edge Representation (τ̂)
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êr̂i

Modified edge�

A
c
tu

a
l 
e
d
g
e

Q

Arbitra
ry

point o
n

the edge

n̂

Figure 1. Defination of the modified edge

A fictitious edge τ̂ is defined to satisfy the diffraction law

for the given directions of incidence and observation shown

in Fig. 1 and it is simply expressed as:

(r̂o − r̂i) · τ̂ = 0 (βo = βi) , n̂ · τ̂ = 0 (1a)

For the observer on ISB/RSB,

τ̂ = ê (1b)

since the vector τ̂ in equation (1a) is indefinite on the fol-

lowing geometrical boundaries

r̂o = r̂i for ISB (2a)

r̂o = r̂i −2n̂(n̂ · r̂i) for RSB (2b)

Equations (1a) and (1b) determine a unique vector τ̂ for a

given combination of r̂i and r̂0.
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Figure 2. Oblique incidence half-plane diffraction and its

top view.

Considering an edge-fixed coordinate system (see Fig. 2),

the position of the source and the observer are defined by

(ri,βi,φi) and (ro,βo,φo) respectively. The unit vectors r̂i

and r̂o are in the direction of incidence and diffraction re-

spectively. The unit vector ê is along the edge and con-

sidered according to the counter clockwise direction. The

unit vectors β̂i and φ̂i are parallel and perpendicular to the

edge-fixed plane of incidence respectively. The incident

field from the dipole E i on the point (Q) is decomposed

into components parallel to β̂i and φ̂i as

E i
βi
(Q) = β̂ ′

0 ·
−→
E i(Q) (3a)

E i
φi
(Q) = φ̂o

′ ·−→E i(Q) (3b)

The sign of the modified edge τ̂ defined in (1) is sepa-

rately determined by that of the following values empiri-

cally given in [12]

cos
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cos
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2
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where, φi, φ ′
i are the angles of incidence and φo, φ ′

o are the

angles of diffraction with respect to the modified edge τ̂ and

actual edge ê, respectively.

2.2 Equivalent Edge Current and the

Diffracted Field

For two polarization in (3a) and (3b), soft and hard bound-

ary conditions are applied and the equivalent edge currents

(EECs) along the edge of the scatterer ê are given by [9,

eq. (13-103)],

−→
Is = −

√
8πk

ηk
e− jπ/4E i

βi
(Q)Dsê (5a)

−→
Ih = −

√
8πk

ηk
e− jπ/4E i

φi
(Q)Dhê (5b)

where Ds & Dh are the diffraction coefficients at the point

Q for soft and hard boundary conditions respectively and

the Keller’s diffraction coefficient of [8, eq. (2)] is

DGT D
s,h =

−e jπ/4

2
√

2πk sinβi

[
sec

(
φo −φi

2

)
∓ sec

(
φo +φi

2

)]

(6)

The diffraction fields are expressed as the line radiation in-

tegrals of the equivalent edge currents along the peripheries

of the scatterers, as follows.

−→
Ed
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jηk

4π

∮
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] e− jk|ro|
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dl (7a)
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Ed
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jηk

4π
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−→
Ih

] e− jk|ro|

|ro|
dl (7b)

3 Numerical Verification of MER

Numerical verification and validation of GTD MER were

detailed in [13]. The diffraction of an infinitesimal dipole

wave by rectangular and triangular plates were considered

as the numerical examples where edge diffractions and cor-

ner diffractions are accounted. The advantages of GTD

MER over UTD in terms of corner diffraction were also

discussed. As there is no corner in circular disk, diffraction

mechanism is comparatively simpler than the rectangular

and triangular plates and edge diffraction is the only source

of the diffraction. The diffraction of an infinitesimal dipole

wave by circular disk as shown in Fig. 3 is considerer to

discuss the advantages of MER over UTD in terms of slope

wave diffraction.

3.1 Diffraction from a Circular Disk

A dipole along the x-axis is considered at (0, 0, 2.5λ ) on

a circular disk plate of radius ra = 2.5λ as shown in Fig. 3

and the field patterns at the plane φ = 0◦ and φ = 90◦ are

shown in Fig. 4(a) and Fig. 4(b) respectively. GTD MER

computed resulted is compared with the UTD and results

using numerical electromagnetic code based on the MoM

(Wipl-D [10]). Though there are poles in GTD diffraction

coefficient (6) at the reflection shadow boundarie (RSB)

and incidence shadow boundarie (ISB), but predicted fields

by GTD MER at the shadow boundaries (SBs) are uniform

and finite. Also, the fields at and near the geometric acous-

tics (θ = 0◦/360◦and 180◦) are predicted perfectly.
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Figure 3. A circular disk illuminated by a dipole.
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Figure 4. Total field patterns for a circular disk of ra =
2.5λ , dipole at (0, 0, 2.5λ ) and the observation at (a) φ =
0◦ (b) φ = 90◦

4 Slope Diffraction

Next the dipole is turned 45◦ with x-axis and 135◦ with

z-axis and total field pattern is shown in Fig. 5. The
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Figure 5. Total field (Eθ ) patterns for a circular disk of

radius ra = 2.5λ , dipole at (0, 0, 2.5λ ) in x-z plane making

45◦ with x-axis and 135◦ with z-axis and observation at φ =
0◦ plane.

GTD MER computed field matches well with Wipl-D re-

sults in all angle of observations. The field computed by

UTD of [14] shown in the Fig. 5 has disagreement with

Wipl-D and GTD MER. The incident field at the diffrac-

tion point D1 (ra, 0, 0) is zero but the slope of the inci-

dent field is non zero

(
∂E i

φ

∂n
6= 0

)
. Adding slope diffracted

field [15] with UTD, results is shown as ‘UTD + Slope

Diff’. Now the results by UTD with slope diffraction shows

very good agreement with Wipl-D. The difference between

‘UTD ’and‘ UTD + Slope Diff’ in Fig. 5 shows the slope

wave effects. But ‘UTD + Slope Diff’ yet has disadvantage

at geometrical acoustics.

As in planer case, PO MER is the line integration reduc-

tion of PO surface integration [11], PO MER includes the

effects of the slope of incident field. PO diffraction coeffi-

cients added with fringe wave diffraction coefficients give

GTD diffraction coefficients [8, eq. (2)]. Hence the tech-

nique MER EECs line integrations with GTD diffraction

coefficients takes the account of the slope of the incident

field at the point of diffraction which is verified through the

results in Fig. 5.

5 Conclusion

If incident field at the point of diffraction is zero but slope

of this incident field is non zero, slope diffraction gives very

important contribution in the field pattern. It is demon-

strated by comparing with MoM-based simulator that MER

EECs line integration computes efficiently the effect caused

by the slope of incident field and no extra computation is

needed, like UTD.
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