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Abstract 
 
This paper presents a general-purpose preconditioner for 
Method of Moments (MoM) matrices to speed up iterative 
solutions of the same. The proposed preconditioner is 
constructed by inverting a sparsified version of the 
impedance matrix, which is found to retain all the 
important singular values of the original impedance matrix. 
The preconditioner is shown to significantly reduce the 
number of iterations while using an iterative solver such as 
Generalized Minimal Residual (GMRES). We test the 
efficacy of the preconditioner for a variety of ill-
conditioned MoM problems, including those arising from 
internal resonance and non-uniform meshing of multiscale 
problems. Additionally, we show that a further speedup of 
the convergence can be achieved, without compromising 
the accuracy, by using an alternative convergence criterion. 
Finally, the problem of ill-conditioning arising from the 
low-frequency breakdown problem is also examined, and a 
novel strategy for handling such problems is proposed as 
an alternative to using the loop-star basis function. 
 
1. Introduction 
 
Dealing with ill-conditioned matrices is one of the most 
critical issues, frequently encountered when using the 
Method of Moments (MoM) for EM modeling problems 
[1]. Such ill-conditioning may arise due to a variety of 
reasons, such as the internal resonance, low-frequency 
breakdown, and the use of poorly conditioned mesh for a 
multiscale geometry. A number of preconditioners, 
including those based on the Singular Value 
Decomposition (SVD), have been proposed in the literature 
[2]–[4] to handle this problem. However, constructing a 
general-purpose preconditioner, which is easy to 
implement in a cost-effective manner, is still an active area 
of research. 
 
Recently, a robust pre-conditioning technique, which is 
based on a singular value filtering approach of the MoM 
matrix, has been presented in [5], [6]. There it is shown that 
we can significantly improve the performance of an 
iterative solvers, e.g. the Generalized Minimal Residual 
(GMRES), without compromising the accuracy of the 
results, such as the RADAR Cross Section (RCS), by 
filtering out the last few singular values that are responsible 

for making the system ill-conditioned. However, one needs 
to obtain the SVD of a large impedance matrix, which is 
computationally as expensive as solving the linear system 
of equations, in the algorithm introduced in [5], [6]. In this 
paper, we introduce an interesting technique for bypassing 
the computation of SVD in the next section. 
 
2. Proposed Pre-conditioning Technique 
 
We introduce an efficient way of constructing an easy-to-
invert matrix, whose singular values are very similar to 
those of the original impedance matrix. Towards this end, 
we begin with the MoM equation: 
 
                                      𝑍𝐼 = 𝑉,                                        (1) 
 
where 𝑍  is the impedance matrix, 𝐼  is the unknown 
coefficient vector, and 𝑉 is the excitation vector. We apply 
the proposed preconditioning technique to two very 
different types of test problems. The first of these is 
associated with the problem of scattering by a Perfect 
Electric Conductor (PEC) sphere at its frequency of 
internal resonance (see Figs. 1–6). The second problem is 
that of a multi-scale structure, viz., a PEC cone (see Figs. 
7–10) with a narrow tip. 
 
Our first step is to construct a thresholded impedance 
matrix 𝑍்௛ , by setting all the entries of 𝑍 that are lower 
than a threshold value, which we pre-define, to zero. As a 
result, the matrix 𝑍்௛  becomes highly sparse matrix with 
typical retention factors of only 4% to 6%, as may be seen 
from Fig. 1 (b) for the test problem of a PEC sphere. Next, 
we construct the preconditioner 𝑃 such that 𝑃 = 𝑍்௛

ିଵ in a 
cost-effective manner, since the inversion of 𝑍்௛ is much 
less expensive than that of the original dense matrix 𝑍 . 
Finally, (1) is transformed into a well-conditioned system: 
 
                                  (𝑃𝑍)𝐼 = 𝑃𝑉.                                    (2) 
 
Figs. 2 and 8 show that 𝑍்௛ inherits essentially all of the 
significant singular values from 𝑍 and thereby, 𝑃 = 𝑍்௛

ିଵ 
becomes a good approximation of Zିଵ . Fig. 3 clearly 
shows that 𝑃𝑍  has much more clustered singular values 
around 8 × 10ିଵ . Such clustering of singular values, 
lowers the Frobenius norm ‖𝐼 − 𝑃𝑍‖ி , where 𝐼  is the 
identity matrix, resulting in substantial improvement in the 



GMRES convergence (see Figs. 4 and 9) [2]. Figs. 6 and 
10 show that the accuracy of RCS is not compromised, 
when we apply the proposed preconditioner. 
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Figure 1. (a) The surface current induced on a PEC sphere 
of radius of 1 m at the internal resonance matrix of 131.55 
MHz; (b) The sparsity pattern of 𝟒𝟗𝟓𝟗 × 𝟒𝟗𝟓𝟗  𝒁𝑻𝒉 , 
where the retention percentage is only 𝟒. 𝟐𝟓%. Here the 
threshold level is 𝟏𝟎ି𝟑. 

 

 

Figure 2. Normalized singular value distribution of the 𝒁, 
𝑍்௛ , and 𝑷 ∗ 𝒁  of the PEC sphere internal resonance 
problem. It is observed that the singular values of 𝒁 and 
𝑍்௛ are the same except last few. 
 

 

Figure 3. Histogram of singular values of the original and 
the preconditioned impedance matrix of the PEC sphere 
internal resonance problem. 

 

 

Figure 4. GMRES convergence for the original and 
preconditioned system of linear equations in the case of 
PEC sphere internal resonance problem. Evidently, the 
proposed preconditioner reduces the number of iterations 
from 498 to 49. 

 

 

Figure 5. An alternative convergence criterion for GMRES 
applied to the case of the PEC sphere internal resonance 
problem. 

 
Apart from introducing the proposed preconditioner, we 
present a macro-basis-function-based approach as an 
alternative to the standard loop-star basis function to 

 



handle the low-frequency breakdown problem of electric–
field–integral–equation (EFIE). This macro basis function 
technique, which allows us to solve the problem with much 
fewer iterations at a considerably higher frequency, where 
condition number is comparatively lower, is proposed 
based upon the crucial observation that the nature of both 
the distribution of surface current density and RCS do not 
 
 

 

Figure 6. The RCS of the PEC sphere, obtained by solving 
the original and the preconditioned system of linear 
equations. 

 
 
 

 

Figure 7. Geometry of the PEC cone scatterer with 
multiscale mesh, where the ratio of the longest to the 
shortest mesh edge is 228.5. 

 

 

Figure 8. Normalized singular value distribution of the 𝒁, 
𝒁𝑻𝒉, and 𝑷 ∗ 𝒁 for PEC cone scattering at 300 MHz. Most 
of the singular values of 𝑷 ∗ 𝒁  tend to group around 
𝟓 × 𝟏𝟎ି𝟒. 

 

Figure 9. GMRES convergence for the original and 
preconditioned linear system in the case of PEC cone. 
Evidently, the proposed preconditioner reduces the number 
of iterations from 2814 to 1254. 

 

 

Figure 10. The RCS of the PEC cone, obtained by solving 
the original and preconditioned system of equations. 

 
change except multiplication of the same with certain 
scaling factor, which we solve as the unknown coefficient 
of the macro basis function, in the low-frequency 
breakdown region. 
 
Finally, we introduce an alternative convergence criterion, 
where we use κଶ –norm of the surface current density 
instead of using the conventional residual norm based 
convergence criterion, for terminating the GMRES 
iteration sooner. Fig. 5 shows that we can reduce the 
number of GMRES iterations from 498 to only 25, for 
instance in the case of internal resonance problem of PEC 
sphere, without compromising the accuracy of the RCS 
results.  
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