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Multifrequency electromagnetic wave propagation in a dielectric slab with Kerr nonlinearity:
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Abstract

The paper focuses on a particular problem of nonlinear mul-

tifrequency electromagnetic wave propagation that is called

problem P. The problem P describes propagation of a finite

sum of n monochromatic TE waves guide by a dielectric

layer having infinitely conducted walls. The permittivity

of the dielectric is described by the Kerr law. The mul-

tifrequency guided wave is thus characterised by n differ-

ent frequencies and n propagation constants. The physical

problem is reduced to a nonlinear multiparameter eigen-

value problem. It is shown that there are nonlinear guided

waves with and without linear counterparts.

1 General statement of the problem

Let Σ = {(x,y,z) ∈ R
3 : 0 ! x ! h,(y,z) ∈ R

2} be a layer

placed in R
3 and filled with nonlinear dielectric. The per-

mittivity ε of the dielectric will be described below; the

permeability µ of the dielectric is a positive constant. The

layer has infinitely conducting walls at x = 0 and x = h.

In accordance with [1], introduce the multifrequency field

Eω =
n

∑
j=1

E je
−iω jt , Hω =

n

∑
j=1

H je
−iω jt , (1)

where E j = E+
j + iE−

j and H j = H+
j + iH−

j are the com-

plex amplitudes [2]. The real (physical) field Ẽω , H̃ω has

the form Ẽω (x,y,z, t) = ReEω , H̃ω(x,y,z, t) = ReHω . Fre-

quencies ω j are different but there can be restrictions re-

lated to a particular nonlinear law chosen for ε [1, 3, 4].

We assume that the permittivity ε is a diagonal (3 × 3)-
tensor that depends on the field by the Kerr law, that is,

ε(Ẽω )≡

⎛
⎝

εx + fx 0 0

0 εy + fy 0

0 0 εx + fx

⎞
⎠ , (2)

where εx,εy,εz are real positive constants and

fr ≡
n

∑
j=1

(
βx, j,r|(E j,ex)|

2+βy, j,r|(E j ,ey)|
2+βz, j,r|(E j,ez)|

2
)
;

here βr, j,r1
are real constants, ( · , ·) is the euclidian scalar

product, er is a unit vector in r-direction, r,r1 ∈ {x,y,z}.

The permittivity in the form (2) is not as general as possi-

ble of course.Nevertheless, such a permittivity is in agree-

ment with some real situations [2, 4–13] and is sufficient to

study various types of waves, for example, TE, TM, and, so

called, coupled TE-TE and TE-TM waves in the Kerr case.

Well, substituting fields (1) into Maxwell’s equations, one

derives that the complex amplitudes Ek, Hk satisfy the fol-

lowing (coupled) equations

⎧
⎪⎪⎨
⎪⎪⎩

rot
n

∑
j=1

H je
−iω jt =−iε

n

∑
j=1

ω jE je
−iω jt ,

rot
n

∑
j=1

E je
−iω jt = iµ

n

∑
j=1

ω jH je
−iω jt .

The operator rot is linear and thus the latter gives

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n

∑
j=1

e−iω jt rotH j =−iε
n

∑
j=1

ω jE je
−iω jt ,

n

∑
j=1

e−iω jt rotE j = iµ
n

∑
j=1

ω jH je
−iω jt .

Since the derived system must be fulfilled for all t, then one

arrives at the following system of n (coupled) systems

{
rotH j =−iεω jE j,

rotE j = iµω jH j, where j = 1,n.
(3)

Thus the complex amplitudes E j, H j satisfy equations (3),

tangential components of the electric fields E j vanish at the

interfaces x = 0, x = h. An additional condition is also

needed; for example, one can fix value of the field at one

of the boundaries, see second formulas in (7) and (10).

2 Multifrequency guided waves of TE type

Let us consider a particular configuration of the filed (1)

that results in the problem studied in sections 3–4. Let an

integer index j′ be such that 1 ! j′ ! n. We consider the

fields E j,H j to be of the form

E j = (0,e
( j)
y ,0)⊤eiγ jz, H j = (h

( j)
x ,0,h

( j)
z )⊤eiγ jz,

E j = (0,0,e
( j)
z )⊤eiγ jy, H j = (h

( j)
x ,h

( j)
y ,0)⊤eiγ jy

(4)

for 1 ! j ! j′ and j′ ! j ! n in the former and letter lines

of (4), respectively; here components e
( j)
y , e

( j)
z , h

( j)
x , h

( j)
y ,



h
( j)
z depend on spatial variable x only (of course, these

quantities, as solutions to Maxwell’s equations, also de-

pend on other parameters of the problem) and γ j are un-

known real constants. In other words, we consider a sum of

transverse-electric fields propagating in directions Oz and

Oy, respectively.

Substituting fields (4) into equations (3), taking into ac-

count (2), and using the notation u j := e
( j)
y for j = 1, j′ and

u j := e
( j)
z for j = j′,n, after some algebra one arrives at the

following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′1 =−(ε1,1 − µω2
1 γ2

1 )u1 −
(
β1,1u2

1 + . . .+β1,nu2
n

)
u1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

u′′j′ =−(ε1, j′ − µω2
j′γ

2
j′)u j′ −

(
β1,1u2

1 + . . .+β1,nu2
n

)
u j′ ,

u′′j′+1 =−(ε2, j′+1 − µω2
j′+1γ2

j′+1)u j′+1−
−
(
β2,1u2

1 + . . .+β2,nu2
n

)
u j′+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

u′′n =−(ε2,n − µω2
n γ2

n )un −
(
β2,1u2

1 + . . .+β2,nu2
n

)
un,
(5)

where ε1, j = εyµω j for j = 1, j′, ε2, j = εzµω j for j = j′,n,

β1, j = µω2
j βy, j,y for j = 1, j′, β1, j = µω2

j βz, j,y for j =

j′+ 1,n, β2, j = µω2
j βy, j,z for j = 1, j′, β2, j = µω2

j βz, j,z for

j = j′+ 1,n.

Tangential electric field components vanish at perfectly

conducting walls [14]. In this case e
( j)
y and e

( j)
z are tan-

gential components. Thus u j|x=0 = u j|x=h = 0 for j = 1,n.

We also fix values of u′j at the boundary x = 0. The con-

ditions listed in this section result in conditions (7), (8) if

n " 2 and conditions (10), (11) if n = 1.

Field (4) propagates in Σ only for special values of γ j.

These values are called propagation constants (PCs). Thus,

the main problem is to determine PCs. From the mathemat-

ical standpoint, the above formulated problem is a nonlin-

ear multiparameter eigenvalue problem for system (5) with

the above listed boundary conditions. The eigentuples (or

eigenvalues in the one-parameter case) are PCs.

Nonlinear laws that are used in the waveguiding nonlin-

ear optics have small factors; these factors can be consid-

ered as small parameters (this is true for the Kerr nonlin-

earity) [3, 4, 15]. This allows one to apply a perturbation

method based on linear problems and prove existence of so-

lutions to the nonlinear problem that are close to solutions

of the used linear ones (see, for example, [16, 17]).

In linear eigenvalue problems eigenfunctions are deter-

mined up to a constant factor; the eigenvalues are uniquely

determined [18]. For nonlinear eigenvalue problems (when

equations depend nonlinearly on the searched for func-

tions), the same boundary conditions are not enough.

As is known, linear electromagnetic wave propagation

problems in a plane layer have discrete sets of PCs (see,

for example, [14, 19]). If one generalises a linear problem

to the nonlinear situation, then it is natural to formulate the

nonlinear problem in such a way that solutions to the non-

linear problem have linear counterparts at least for ’small’

nonlinearities. Thus, the necessity of an additional condi-

tions is clear.

As an additional condition, one can fix (or prescribe) value

of the field components (or their derivatives) at one of the

boundaries, for example at x = 0. Fixing norms (in an ap-

propriate function space) of e
( j)
y and e

( j)
z , one gets another

variant of the additional condition. We should stress how-

ever that in an open waveguide, a natural additional condi-

tion is the former one; moreover, the latter condition is not

suitable from the physical point of view, see also [1].

3 Nonlinear eigenvalue problems

Below integer indexes i, j vary from 1 to n " 2 and often

we do not indicate this explicitly.

We introduce 2n positive constants ai, bi and n2 nonnegative

constants αi j as well as n real parameters λi. In addition, we

consider n-tuple λ and (n× n)-tuples α , α ′, and 0.

The tuple λ consists of n parameters λi and can be consid-

ered as an n-dimensional vector λ = (λ1, . . . ,λn). The tuple

α consists of n2 parameters αi j and can be considered as a

(n× n)-matrix. The tuple α ′ consists of n2 parameters αi j ,

where αii > 0 and αi j for i ̸= j are zeros; the tuple 0 can be

considered as a zero (n× n)-matrix.

We define sets Λi = [0,λ ∗
i ), where λ ∗

i are positive suffi-

ciently big constants. The choice of λ ∗
i will be clear from

theorems 3 and 4. It is assumed that αi j ∈ Ai j, where

Ai j = (0,α∗
i j). In this notation α∗

ii are arbitrary but fixed

positive constants and α∗
i j for i ̸= j are positive constants

that depend on α∗
ii and λ ∗

i . The parameters α∗
i j for i ̸= j, in

general, are sufficiently small, see theorem 4.

Below we use the notation ∏l Cl as well as C1 × . . .×Ck

to define a (finite) Cartesian product of sets Cl . We define

the following Cartesian products Λ = ∏i Λi, A = ∏i, j Ai j.

The notation λ ∈ Λ and α ∈ A mean that λi ∈ Λi and αi j ∈
Ai j, respectively. We denote the interval (0,h) and segment

[0,h] by I and Ī, respectively.

Now let us consider the system of n coupled equations

⎧
⎪⎨
⎪⎩

u′′1 =−(a1 −λ1)u1 −
(
α11u2

1 + . . .+α1nu2
n

)
u1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

u′′n =−(an −λn)un −
(
αn1u2

1 + . . .+αnnu2
n

)
un,

(6)

where the prime marks denote differentiation with respect

to x; here it is assumed that (x,λ ,α)∈ Ī×R
n×A. Solutions

to system (6) are denoted by ui, ui(x), or ui(x;λ ,α).



The problem P = P(α) consists in finding n-tuples λ
for which there exist solutions u1 ≡ u1(x;λ ,α), . . . ,un ≡
un(x;λ ,α) to system (6) that satisfy boundary conditions

ui(0;λ ,α) = 0, u′i(0;λ ,α) = bi, (7)

ui(h;λ ,α) = 0, (8)

and such that u1, . . . ,un ∈C2(Ī).

The correspondence between equations (5) and (6) is clear.

In fact, system (6) is more general than (5).

If α → α ′, that is, αi j → +0 for i ̸= j, then the prob-

lem P(α) degenerates into the problem P(α ′). As is seen

from system (6) and formulas (7)–(8), the problem P(α ′)
consists of n independent nonlinear problems. These prob-

lems are denoted by Pi.

In order to formulate the problems Pi rigorously let us con-

sider the equation

v′′i =−(ai −λi)vi −αiiv
3
i , (9)

where the prime marks denote differentiation with respect

to x; here it is assumed that (x,λi,αii) ∈ Ī×R×R+, R+ =
(0,+∞). Solutions to equation (9) are denoted by vi, vi(x),
or vi(x;λi,αii).

Every problem Pi consists in finding values λi for which

there exist solutions vi ≡ vi(x;λi) to equation (9) that satisfy

boundary conditions

vi(0;λi,αii) = 0, v′i(0;λi,αii) = bi, (10)

vi(h;λi,αii) = 0, (11)

and such that vi ∈C2(Ī).

Since γ j in (4) are real, then µω2
j γ2

j are positive and for

this reason electromagnetic applications require only posi-

tive λ j in the problems P(α) and Pj. If n= 1 and, therefore,

j′ = 0 or j′ = 1, then one comes to one of the problems Pj. If

all β1, j and β2, j are zeros, then one arrives at n linear prob-

lems that arise when one needs to determine linear guided

TE waves propagating in the layer Σ with linear permittiv-

ity. These linear problems are equivalent to the problems P0
j

formulated in section 3.

4 Results

Below we use additional notation for the eigentuples and

eigenvalues. Eigentuples λ of the problem P(α) will be

denoted by λ̄ k1...kn
= (λ̄1,k1

, . . . , λ̄n,kn
), where k1, . . . ,kn are

nonnegative integer indexes. Eigenvalues λi of the prob-

lems Pi and P0
i will be denoted by λ̂i,k′i

and λ̃i,k′i
, respec-

tively, where k′i are nonnegative integer indexes. It is as-

sumed that eigenvalues λ̂i,k′i
, λ̃i,k′i

are arranged in the de-

scending and ascending.

Since the problems P0
i are easily solved, then we immedi-

ately start with the following fact.

Statement 1 For any h " hmin = π√
ai
> 0 the problem P0

i

has a finite number (not less than 1) of simple (positive)

eigenvalues 0 ! λ̃i,1 < .. . < λ̃i,k < ai; if ai = 0, then the

problem P0
i does not have positive solutions.

Let us consider the problem Pi. We consider functions θi =
v2

i , µi = v′i/vi, where vi ≡ vi(x;λi,αii) is a solution to the

Cauchy problem for equation (9) with initial data (10). By

virtue of (9), functions θi(x) and µi(x) satisfy the following

system {
θ ′

i = 2θiµi,

µ ′
i =−(µ2

i + ai −λi+αiiθi).
(12)

Taking into account (10), the first integral of system (12)

has the form

1
2
αiiθ

2
i +(µ2

i + ai−λi)θi = b2
i . (13)

Let Ti(λi) =
+∞∫
−∞

ds
s2+ai−λi+αiiθi(s)

, where θi(s) is defined

from (13) with µi = s.

Using the IDEM, we obtain

Statement 2 (of equivalence) The value λ̂i is a solution to

the problem Pi if and only if there exists an integer m′
i =

m̂i " 0 such that λi = λ̂i is a solution to the DE

(m′
i + 1)Ti(λi) = h (14)

for m′
i = m̂i; the corresponding eigenfunction vi ≡

vi(x; λ̂i,αii) has m̂i (simple) zeros x′i,r ∈ I, where x′i,r =

rTi(λ̂i) =
rh

m̂i+1
, r = 1, m̂i.

Analyzing dispersion equation (14), we get

Theorem 3 There exist an integer m′
i " 0 such that for ev-

ery integer m " m′
i equation (14) has at least one (positive)

solution λ̂i = λ̂i,m with λ̂i,m → +∞ as m →+∞ and, there-

fore, the problem Pi has infinitely many (positive) eigenval-

ues λ̂i,m with an accumulation point at infinity. Further-

more,

1) there is a constant λ ′
i > ai such that all eigenvalues

λ̂i,m ∈ [0,ai)∪ (λ ′
i ,+∞) are simple eigenvlaues;

2) if the problem P0
i has p (positive) solutions λ̃i,0 <

λ̃i,1 < .. . < λ̃i,p−1, then there exists a constant α ′′
ii > 0 such

that for any (positive) αii = α ′
ii < α ′′

ii it is true that

λ̂i,m ∈ [0,ai) and lim
α ′

ii→+0
λ̂i,m = λ̃i,m for m = 0, p− 1,

where λ̂i,0, . . . , λ̂i,p−1 are first p solutions to the problem Pi

with αii = α ′
ii;



3) if m " p, then λ̂i,m has no linear counterpart and

limαii→+0 λ̂i,m =+∞;

4) maxx∈(0,h) |vi(x; λ̂i,m,αii)| = O(s
1/2
m ) as m → ∞,

where sm = λ̂i,m.

Using problems Pi as nonperturbed and applying the IDEM,

we obtain the main result of this paper.

Theorem 4 Let every problem Pi have mi simple eigen-

values λ̂i,1, . . . , λ̂i,mi
∈ [0,ai)∪ (λ ′

i ,λ
∗
i ) ⊂ Λi, respectively.

Then there exist positive constants α∗
i j for i ̸= j such that for

any 0<αi j <α∗
i j (i ̸= j) the problem P(α) has at least m1×

. . . × mn eigentuples λ̄ k1,k2,...,kn
= (λ̄1,k1

, λ̄2,k2
, . . . , λ̄n,kn

),

where ki = 1,mi; furthermore, every λ̄ k1,k2,...,kn
belongs to a

neighbourhood of the point (λ̂1,k1
, λ̂2,k2

, . . . , λ̂n,kn
).

Since values λ ∗
i in Λi can be chosen as big as necessary,

then theorem 4 states existence of eigentuples of the prob-

lem P(α) that, in particular, belong to the domain where

there are no solutions to the problems P0
i . This result pre-

dicts existence of a novel type of nonlinear guided waves.
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